High-precision temporal calibration of Middle Triassic vertebrate biostratigraphy: U-Pb zircon constraints for the Sinokannemeyeria Fauna and Yonghesuchus

LIU Jun1,2, Jahandar RAMEZANI3, LI Lu1, SHANG Qing-Hua1, XU Guang-Hui1, WANG Yan-Yin1, YANG Jia-Sheng1,2

(1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China liujun@ivpp.ac.cn)
(2 University of Chinese Academy of Sciences Beijing 100049, China)
(3 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA)

Abstract Tetrapod assemblages provide a useful means for global correlation of the terrestrial Triassic sedimentary deposits, but currently no reliable temporal framework has been achieved for the Middle Triassic tetrapod assemblages. Here we report U-Pb zircon chemical abrasion–thermal ionization mass spectrometry dates for five volcanic ashes interbedded with vertebrate fossils from the Ermaying and Tongchuan formations of China. Our results support a late Anisian age for the Sinokannemeyeria Fauna and an early Ladinian age for Yonghesuchus Fauna. It is now possible, through biostratigraphic correlation, to provide accurate ages to other Middle Triassic successions such as the Upper Cynognathus Assemblage Zone of the Karoo of South Africa, the Eryosuchus fauna of the Donguz Suite of Russia and the Karamayi Formation of Xinjiang, China. The base of Anisian (Lower/Middle Triassic boundary) should lie below the base of the Ermaying Formation in the Ordos Basin.

Key words Middle Triassic, Ermaying Formation Tongchuan Formation, Sinokannemeyeria Fauna, Yonghesuchus, U-Pb dating

1 Introduction

The Triassic is a very important period in vertebrate history as it marks the first appearance of mammals (Lucas and Luo, 1993; Luo, 2007; Martinez et al. 2011), dinosaurs (Martinez et al., 2011; Nesbitt et al., 2010; Ramezani et al., 2011; Sues, 2016), and turtles (Li et al., 2008; Schoch and Sues, 2015). Because of the rich and diverse vertebrate record from the Triassic, tetrapod fossils have been used for global biostratigraphic correlation of Triassic
continental sedimentary successions (e.g. Lucas, 2010). However the correlation of Triassic vertebrate biozones to marine biozones have been controversial, and progress hindered by the lack of reliable radioisotopic age constraints.

The situation has improved in the relatively recent past and radioisotopic dates are now available for some Triassic deposits (e.g. Mundil et al., 2010). To date the only Triassic tetrapod-bearing terrestrial deposits for which radiometric dates are available are the Ischigualasto tetrapod assemblage (Martinez et al., 2011; Rogers et al., 1993), the Chañares Formation (Marsicano et al., 2016), the Chinle Formation (Irmis et al., 2011; Ramezani et al., 2011; Riggs et al., 2003), the Ermaying and Tongchuan Formations (Liu et al., 2013), and the Puesto Viejo Formation (Ottone et al., 2014). However, the zircon U-Pb sensitive high-resolution ion microprobe (SHRIMP) dates reported by Liu et al. (2013) for volcanic ash beds from the Ermaying and Tongchuan formations of the Ordos Basin, China have large error bars. We now report new high resolution chemical abrasion–thermal ionization mass spectrometry (CA-TIMS) dates for the same ash beds.

Apart from the Cynognathus Assemblage Zone of the Karoo Supergroup of South Africa, the Ermaying Formation of the Ordos Basin of China preserves one of the most prolific Middle Triassic terrestrial tetrapod assemblages. The Lower Ermaying Formation has been biostratigraphically correlated with the Cynognathus Subzone B Assemblage, and the Upper Ermaying Formation (Sinokannemeyeria Fauna) correlated with Cynognathus Subzone C assemblage (Lucas, 2010; Rubidge, 2005). Yonghesuchus from the Tongchuan Formation is closely related to Gracilisuchus from the Chañares Formation of Argentina (Butler et al., 2014).

2 Geological setting

The Ordos Basin is an intracontinental basin situated in western north China with an 8000 m thick sedimentary infill of Paleozoic to Cenozoic age. The Triassic succession comprises the Liujiagou, Heshangou, Ermaying, Tongchuan and Yanchang formations. The Ermaying and Tongchuan Formations in turn each comprise two members. Member II of the Tongchuan Formation comprises two beds of which Bed II has a colorful basal tuff layer which serves as a regional marker layer (Fig. 1).
3 Methods and results

Volcanic ash samples and vertebrate fossils were collected from different stratigraphic horizons in the Ermaying and Tongchuan Formations from five localities in Shanxi Province, China (Fig. 2; Table 1). Extensive field prospecting for tetrapod fossils was undertaken at each locality to establish the correlative vertebrate biozone. Stratigraphic sections were measured at all localities to establish the stratigraphic position of each ash relative to lithostratigraphic markers and/or fossils.

![Map showing the studied area and sample localities](https://example.com/fig2.png)

Fig. 2 Map showing the studied area and sample localities (revised from Liu et al., 2013, fig. 1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Locality</th>
<th>GPS co-ordinate</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>Jiaokou</td>
<td>N 36°39'54" E 110°36'24"</td>
<td>Tongchuan</td>
</tr>
<tr>
<td>ST</td>
<td>Sangbi</td>
<td>N 36°37'29" E 110°38'7"</td>
<td>Tongchuan</td>
</tr>
<tr>
<td>JD</td>
<td>Shixi</td>
<td>N 37°26'16" E 110°39'23"</td>
<td>Ermaying</td>
</tr>
<tr>
<td>SJ</td>
<td>Sanjiao</td>
<td>N 37°17'12" E 110°42'23"</td>
<td>Ermaying</td>
</tr>
<tr>
<td>ME</td>
<td>Mengjia</td>
<td>N 37°17'12" E 110°42'23"</td>
<td>Ermaying</td>
</tr>
</tbody>
</table>

Samples JD, ME and SJ are all from Member II of the Ermaying Formation but their relative positions on the stratigraphic columns are difficult to determine. Sample SJ was previously mistakenly assigned to the Tongchuan Formation (Liu et al., 2013), and of all the above samples, SJ is the only one which has good biostratigraphic provenance.

Two tuff samples were processed from the Tongchuan Formation: sample LT is from the tuff marker bed at Jiaokou, and sample ST is from Sangbi and was collected 15 m above the stratigraphic horizon of the holotype of *Yonghesuchus* (Liu et al., 2001) (Fig. 3).

We present new CA-TIMS U-Pb single-zircon data for five samples from possible two key volcanic ash layers from the Ermaying and Tongchuan formations, constraining 2 million years of Triassic terrestrial history. Fig. 3 shows the relative stratigraphic positions of the dated ash beds.
Fig. 3. The correlation of three stratigraphic columns to show the relative position of samples LT was collected from Sangbi, but its position is showed on the Menjiata section. JD is not showed here because it is hard to determine its exact position on the stratigraphic column. The Menjiata section from Regional Geological Report of Shilou, the Sangbi section from Liu et al. (2001).

Ermaying Formation
Sample JD Six prismatic zircons were analyzed, five of which yield a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ date of $243.29 \pm 0.14/0.17/0.31$ Ma and a mean square of weighted deviates (MSWD) of 1.1. The sixth analysis yielded much older dates that is attributed to inheritance and is excluded (see Table 2 for an explanation of error notations).

Sample SJ Five prismatic zircons were analyzed, four of which yield a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ date of $243.528 \pm 0.069/0.13/0.29$ Ma (MSWD=0.32) (Fig. 4). The fifth analysis yielded much older dates that is attributed to inheritance and is excluded (see Table 2 for an explanation of error notations).

Sample ME Five analyses with dates as old as 1.744 Ga suggest significant detrital input.
due to sedimentary reworking. However, the youngest analysis with 206Pb/238U dates of 243.53 ± 0.21 Ma provide a maximum estimate for the age of deposition of the bed, consistent with its stratigraphic position.

Tongchuan Formation
Sample LT
This sample contains abundant, clear, short, prismatic zircons from which six individual grains were analyzed. These define a tight cluster with a weighted mean 206Pb/238U date of 241.369 ± 0.061/0.12/0.29 Ma (MSWD = 0.83) (Fig. 4) (see Table 2 for an explanation of error notations).

Sample ST
This sample contains abundant, clear, short, prismatic zircons from which five individual grains were analyzed. These define a tight cluster with a weighted mean 206Pb/238U date of 241.482 ± 0.074/0.13/0.29 Ma (MSWD=0.60) (Fig. 4) (see Table 2 for an explanation of error notations).

![Fig. 4](advancedpublicationimage)
Age distribution plots for analyzed zircon samples SJ, LT and ST
Bar heights represent 2σ analytical uncertainty of individual zircon analyses.

<table>
<thead>
<tr>
<th>Sample</th>
<th>206Pb/238U age (Ma)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>N</th>
<th>MXWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>241.369</td>
<td>0.061</td>
<td>0.12</td>
<td>0.29</td>
<td>6</td>
<td>0.83</td>
</tr>
<tr>
<td>ST</td>
<td>241.482</td>
<td>0.074</td>
<td>0.13</td>
<td>0.29</td>
<td>5</td>
<td>0.60</td>
</tr>
<tr>
<td>JD</td>
<td>243.29</td>
<td>0.14</td>
<td>0.17</td>
<td>0.31</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>SJ</td>
<td>243.528</td>
<td>0.069</td>
<td>0.13</td>
<td>0.29</td>
<td>4</td>
<td>0.32</td>
</tr>
<tr>
<td>ME</td>
<td>≤ 243.53</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: All dates are based on single-zircon CA-TIMS analyses. Uncertainties reported at 2σ level. X. internal (analytical) uncertainty in the absence of all external or systematic errors; Y. incorporates the U-Pb tracer calibration error; Z. includes X and Y, as well as the uranium decay constant errors of Jaffey et al. (1971); N. number of analyses included in the weighted mean date.
4 Discussion and conclusion

Our geochronologic results establish CA-TIMS dates for Member II of the Ermaying Formation and Member II (lower Bed II) of the Tongchuan Formation. In particular, because of targeted fossil collecting at each ash locality, the vertebrate assemblage zone provenance of the ashes has also been established and dated: 243.53 Ma (late Anisian) for the lower part of Sinokannmeyeria Fauna, and 241.48 Ma (early Ladinian) for Yonghesuchus.

Global correlation of Mid-Triassic tetrapod bearing faunas Based on the co-occurrence of Shansiodon from both the Sinokannmeyeria Fauna of the Ermaying Formation and the Subzone C of the Cynognathus Assemblage Zone of the Beaufort Group of South Africa (Hancox et al., 2013), the Sinokannmeyeria Fauna has been correlated to the South African Cynognathus C subzone of the Beaufort Group. Our research demonstrates a CA-TIMS date of 243.53 Ma (late Anisian) for the Sinokannmeyeria Fauna which is in agreement with the proposal of Rubidge (2005) who, based on biostratigraphy, considered the Cynognathus C subzone to be late Anisian, and correlated it with other Pangaean successions. Utilizing the co-occurrence of the cynodont Notogomphodon (Liu and Abdala, 2015), the Sinokannmeyeria Fauna can be correlated to Russian Eryosuchus Fauna which has long been considered to be Middle Triassic (late Anisian to Ladinian) (Shishkin et al., 2000) and was correlated to the South African subzones B and C of the Cynognathus Assemblage Zone (Hancox, 1998; Rubidge, 2005). Our work supports the idea that Eryosuchus fauna is at least partially correlated to Cynognathus C subzone and is thus late Anisian.

The Puesto Viejo Formation (Group) of Argentina was also correlated with subzone C and assigned an age of late Anisian based on shansiodont Vinceria (Rubidge, 2005). However, a Carnian age (235.8 ± 2.0 Ma) is obtained by the SHRIMP U-Pb dating (Ottone et al., 2014). This dating is not concordant with the bearing tetrapods, and needs to be further tested.

Yonghesuchus is closely related to Turfanosuchus from the Karamayi Formation of Xinjiang, China and Gracilisuchus from the Chañares Formation of La Rioja Province, Argentina (Butler et al., 2014). Our research demonstrates a CA-TIMS date of 241.48 Ma (early Ladinian) for the Yonghesuchus Fauna which is earlier than the early Carnian age of the Chañares Formation (Marsicano et al., 2016), and indicates that the age of Karamayi Formation could extend to Ladinian or even Carnian.

These newly determined CA-TIMS dates in the Ordos Basin of China provide the first empirical evidence for Anisian and Ladinian ages respectively for the Sinokannmeyeria and Yonghesuchus faunas. This is of international significance as it is now possible to provide proof of age to other Middle Triassic successions which share biozone defining vertebrate taxa. In particular for the Anisian this is pertinent to the Upper Cynognathus Assemblage Zone of the Karoo of South Africa and the Eryosuchus fauna of the Donguz Suite of Russia, and for the Ladinian it applies to Chañares Formation of Argentina.

Age of the Ermaying Formation and the Lower/Middle Triassic boundary Recently, Late Triassic ages were reported for the Ermaying Formation of the Yanshan belt (Meng et al.,
However, typical Ermaying Formation generally distributes in Ordos and West Shanxi-Henan stratigraphic regions, not in Yanshan belt (Yang et al., 2000); and the former name Huzhangzi Formation was reused to replace the name Ermaying Formation in Yanshan belt (Wei et al., 2015).

If we accept the similar deposit velocity for all the Ermaying Formation, the base of the Ermaying Formation here is assumed as ca. 245 Ma, much younger than the age of the base of Anisian (~247 Ma) and the base of Anisian (Lower/Middle Triassic boundary) should lie within the Heshanggou Formation, lower than current schemes (Li and Cheng, 1995; Yang et al., 2000).

Acknowledgements We thank Liu Yu-Feng, Xu Xu, Liu Yu-Dong for their work for collecting fossils and tuff samples. Corwin Sullivan and Sterling Nesbitt read and commented on an early version of this paper. Bruce Rubidge and Spencer Lucas reviewed the paper, and significantly improve it. The research was supported by the National Natural Science Foundation of China (41472017 and 41661134047), State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (20161101), Chinese Academy of Sciences (XDPB05). Fossil collection was also supported by the excavation grant from the Chinese Academy of Sciences.

Acknowledgements We thank Liu Yu-Feng, Xu Xu, Liu Yu-Dong for their work for collecting fossils and tuff samples. Corwin Sullivan and Sterling Nesbitt read and commented on an early version of this paper. Bruce Rubidge and Spencer Lucas reviewed the paper, and significantly improve it. The research was supported by the National Natural Science Foundation of China (41472017 and 41661134047), State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (20161101), Chinese Academy of Sciences (XDPB05). Fossil collection was also supported by the excavation grant from the Chinese Academy of Sciences.

摘要：四足动物组合带是全球陆相三叠系对比的有力手段，但是迄今为止中三叠世的四足动物组合尚没有可靠的时间框架。本文报道了五个采自二马营组和铜川组，与四足动物化石共同产出的火山凝灰岩样品的锆石化学剥蚀-热电离质谱法年龄。结果表明中国肯氏兽动物群时代为安尼期晚期，而永和鳄的时代为拉丁期早期。通过生物地层对比，这一结果还为其他中三叠世的四足动物组合，如南非的犬颌兽带上部、俄罗斯的引鳄动物群以及新疆的克拉玛依组提供了准确的年龄。鄂尔多斯盆地下中三叠统界线应低于二马营组底界。
References

Irmis R B, Mundil R, Martz J W et al., 2011. High-resolution U–Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth Planet Sc Lett, 309(3–4): 258–267

