黄河上游植被覆盖度空间分布特征及其影响因素

裴志林1,2，杨勤科1,3，王春梅3，庞国伟3，杨力华1,2

（1. 中国科学院水利部水土保持研究所，陕西杨凌712100；2. 中国科学院大学，北京100049；3. 西北大学城市与环境学院，陕西西安710127）

摘 要：采用2000—2015年MODIS NDVI数据计算黄河上游年最大植被覆盖度（FVC），了解空间分布状况及变化特征，同时，采用了一种基于统计学原理的地理探测器模型，考虑非气候类环境因素、气候类环境因素和人类活动因素，使用相应的代理变量对黄河上游FVC空间分布的影响因素做定量研究。研究表明：① 黄河上游FVC总体上以改善为主，空间分布特征变化不大；② 单因子方面，降水量（q 值0.669）是该地区FVC空间分布的主要影响因素，其他因子的影响作用存在区域差异；③ 降水分布与土层类型、土地利用方式的交互作用（q 值0.777、0.775）对研究区FVC空间分布起主导作用，土壤类型和土地利用的影响作用在一定高程、降水量条件下才得以体现；④ 总体上，气候类环境因素>非气候类环境因素>人类活动因素，人类活动在与降水量环境因子的共同作用下能够更充分地解释FVC空间分布；⑤ 对研究区的生态恢复情况应放在降水的充分利用和土地利用方式改进等方面。关键词：植被覆盖度（FVC）；空间分异性；影响因素；地理探测器；黄河上游

植被是联系土壤、水体和大气的纽带，也是地表生物赖以生存的基础，在保持水土、维持生态系统稳定和调节气候等方面具有重要作用[1]。植被覆盖度（FVC）是衡量生态环境的重要指标，直接关系到人类的生存环境和生活质量，随着人们对生态环境的日益重视，FVC的空间分布特征和影响因素越来越引发人们的关注[2]。

黄河流域主要分布在干旱和半干旱地区，生态环境较为脆弱，是我国开展水土保持措施的重点区域。黄河上游主要是指黄河流域的源区至内蒙古托克托县河口村（原名为河口镇）部分。该地区生境条件复杂多变，各主要植被类型分布地段的自然地理因子及其组合的过渡性和区域分异明显[3]。从黄河流域植被生长总体状况来看，该地区生态保护和水土保持措施取得了一定的效果，植物生长状况逐渐改善[4-6]；并且在气候和人类活动的共同作用下，河水中推移质泥沙含量逐渐减少，达到历史上较低的水平[7]。

① 收稿日期：2018-07-22； 修订日期：2018-12-04
基金项目：中国科学院战略性先导科技专项(XDA20040202)；陕西省教育厅科学研究计划项目(15JK1725)资助
作者简介：裴志林(1993-)，男，硕士研究生，主要研究方向为水土保持监测。E-mail: peizhlin16@mails.ucas.edu.cn
通讯作者：杨勤科。E-mail：qkyang@nwu.edu.cn

http://arj.xjegi.com
尽管一些科研工作者已经对本研究区 FVC 空间分布特征作了一定的研究，但是之前的研究所阐述了 FVC 空间分布特点，对于空间分布影响因素的研究则少有涉及。或者只考虑某几个主观认定的影响因素，并没有进行全面考虑环境因素和人为因素的共同作用，更没有进行定量的研究。本文采用了王劲峰等提出的地理探测器模型，以黄河上游的年平均 FVC 为因变量，以气候类环境因素、非气候类环境因素和人类活动因素等 3 大类共 12 个因子为自变量，利用地理探测器的 4 个探测器（分异及因子探测、交互作用探测、风险区探测和生态探测）对黄河上游 FVC 空间分布的影响因素进行定量的研究。

1 研究区概况

本文的研究区域为黄河上游流域（图 1），边界范围由杜鹤强以 SRTM-DEM 与 ASTER-GEDEM 数据集为数据源，利用河道收录法与河道标量法提取（http://westdc.westgis.ac.cn/）。区域范围自黄河源区至内蒙古托克托县河口村，横跨青海、四川、甘肃、宁夏、内蒙古 5 个省（自治区），面积 5.39×10^5 km²，地理位置为 96°2′～111°15′E，32°20′～41°45′N。研究区地势总体西高东低，土壤类型主要以草甸土、草掺土、寒漠土、栗钙土、灰褐色土等为主；该地区由于其独特的地理位置、大气环流及地形地貌特征表现为温带、寒温性和高寒 3 种热量带相互交错的特点。植被类型主要包括温带典型草原、高寒草甸、高寒草原因荒漠草原以及灌丛、森林等，以草地为主[1]。

2 数据与方法

2.1 驱动因子的确定

黄河上游地区由于其独特的地理环境条件，影响 FVC 空间分布的因素较为复杂。一般来说，FVC 空间分布的直接决定因素（Z）包括环境因素和人类活动因素。为了对比地形土壤等因子和气候因子对 FVC 空间分布的影响，本文从气候类环境因素（降水、气温等）和非气候类环境因素（地形、土壤等）方面考虑，对于每一类影响因素选取相应的代理变量（X）。其中非气候类环境因素使用土壤类型、表土结构、高程和坡度等 4 个代理变量；人类活动因素一般不容易定量表示，但是考虑到人类对于植被的影响主要与当地的人口、经济状况和土地利用方式有关，所以选用地人密度、人均地区生产总值（地区 GDP）和土地利用方式等 3 个代理变量[11]（图 2）。

2.2 数据来源与处理

由于本文研究区横跨干旱区、半干旱区、半湿润区和湿润区，能够找到纯植被像元和纯裸土像元，满足使用像元二分法反演植被覆盖度（FVC）的条件[24]。所以，可以使用像元二分法基于 NDVI 遥感数据计算研究区 FVC。选取 2000—2015 年空间分辨率为 500 m 的 MODIS1KM 月值产品（http://www.gscloud.cn/），选取每年植物生长季（4—10 月）的 NDVI 数据计算年内最大 NDVI 值，然后使用以下公式计算年内最大植被覆盖度[25]：

\[FVC = \frac{(NDVI - NDVI_{min})}{(NDVI_{max} - NDVI_{min})} \] (1)

式中: NDVI 为像元实际值; NDVI_{max} 为地表全部被裸土覆盖所对应的 NDVI 值; NDVI_{min} 为地表全部被植被所覆盖对应的 NDVI 值。采用生长季影像样区抽样的方法进行了精度验证，在 0.01 显著水平下满足精度要求。

非气候类环境因素中的高程数据来源于 90 m 分辨率的 SRTM DEM 数据，坡度则基于 DEM 使用 GIS 软件生成，为了避免坡度在低分辨率下发生衰减，坡度栅格空间分辨率为 90 m。土壤类型及表土结构数据来源于世界土壤数据库（HWSD）的中国土壤数据集(v1.1)。
图 2 黄河上游 FVC 空间分布特征直接因素及其代理变量

Fig. 2 Direct determinants and their proxy variables concerning the FVC spatial distribution in the upper reaches of the Yellow River

气候类环境因素数据使用了中国地面累积年值数据集（1981—2010 年），由国家气象科学数据共享服务平台（http://data.cnma.cn/site/index.html）提供。采用研究区及周边的 385 个研究台站的气象资料，根据气象数据具有较大的空间相关性的特点，使用薄板样条函数方法(26) 和 Kring 方法(27) 对气象数据进行插值。考虑到高程对降水和气温的影响，基于薄板样条函数理论以 DEM 为协变量，使用 ANUSPLIN 软件对累积年平均气温和年平均降水量进行插值；而对其他气象数据，使用 Kring 方法进行了插值，以上插值结果的空间分辨率均为 1 km。

人类活动因素中的人口密度和人均地区生产总值等数据来源于 2010 年中国区域统计年鉴，以县为单位进行统计并使用 GIS 软件进行了空间关联；土地利用方式数据来源于中国 2015 年 1 km 土地利用遥感监测数据，根据 LUC 分类体系，将土地利用方式分为耕地、林地、草地、水域、建设用地、未利用地和其他土地等 7 个类别。

地理探测器的因变量需要分类数据，所以除土壤类型、表土结构和土地利用方式等变量不需要处理外，其他代理变量需要进行重分类。其中使用专家知识对高程进行重分类为 5 类；使用自然断点法对其他剩余代理变量进行重分类，分类数目为 4 或 5 类。

首先对 385 个研究台站气候因素中驱动因子的观测值进行插值处理，之后和其他的驱动因子一起进行重分类。利用 ArcGIS 10.4 中的渔网工具将研究区划分为 10 km×10 km 的研究单元，在每个研究单元中心布设样本点提取属性，从而将 X 和 Y 之间的属性值进行匹配。最后将样本点提取的 X 和 Y 的属性值代入地理探测器进行处理（数据处理流程如图 3）。

2.3 地理探测器模式简介

地理探测器模式是一种研究空间分异性工具。在本研究中，地理探测器可以用来定量分析黄河上游地区 FVC 空间分布影响因素以及确定不同影响因素的交互影响作用。

地理探测器模式的原理如下：

$$q = 1 - \frac{1}{N} \sum \sigma^2$$

式中：q 为空间分异性指标，用来度量自变量对因变量的解释程度；σ 为指标的方差；h 为变量的分区，h = 1, 2, 3, …, L, L 表示分区数目。q ∈ [0, 1]。
的大小反映了空间分异的程度。q 值越大，表示空间分层异质性越强，反之则空间分布的随机性越强。当 q = 0 时指示研究对象不存在空间异质性；当 q = 1 时表示具有完美的空间异质性。地理探测器主要适用于寻找因变量的解释变量，即因变量驱动因子，其优势在于评价指标 q 值表征了因子解释力的大小，即影响因子 X 解释了 100 × q% 的 FVC 的空间分布，q 值越大，解释程度越高，该因子对因变量的影响也就越大。

3 结果及分析

3.1 黄河上游植被覆盖空间分布状况

使用 2000—2015 年生长季（4—10 月）月值 NDVI 数据提取每年最大 NDVI 值和 FVC 值，得到年 FVC 变化拟合曲线（图 4a，0.05 显著水平）和累积年平均 FVC（图 4b）。就植被覆盖度变化而言，近年来，研究区 FVC 虽有波动，但主要表现为稳定或增加，局部地区表现为减少（图 4c，阈值 -0.1, 0.1）。

从空间分布来看，研究区 2000 年和 2015 年 FVC（图 4c, 4d）在空间分布上并无明显变化，所以选择年最大 FVC 的累积年平均值表示空间分布特征。全区总体上，西南部植被覆盖度较高，而东北部及中部地区除河套平原，宁夏平原和黄河沿线外，植被覆盖度相对较低（图 4b）。主要原因在于，西南部地区分布有阿尼玛卿山和巴颜喀拉山等山系，海拔相对较高（图 5g），主要的植被类型为森林、草地等（图 5l），具有较高的植被覆盖度；而中部地区为宁夏平原，多种植物被种植，植被覆盖度相对较低；中部和东北部地区由于腾格里沙漠、毛乌素沙漠、河东沙

![图 4 研究区植被覆盖变化](Fig. 4 Vegetation coverage in the study area)
图 5 地理探测因子类别化空间分布

Fig. 5 Spatial distribution of classified potential determinants
区的存在，植物生长总体状况较差，河套地区和银川周边地区凭借其平原优势植物生长状况较好。

3.2 植被覆盖度空间分布的主导影响因素

以非气候类环境因素、气候类环境因素和人类活动因素等 3 大类共 12 个重分类后的代理变量为影响因子 X (图 5)，以研究区累积年平均植被覆盖度作为因变量。使用格网点的关联，格网点密度为 10 km × 10 km，考虑到水域的影响，对区内青海湖及水域不设采样点，研究区共有采样格网点 5301 个。

使用地理探测器模型对 FVC 空间分布特征的影响因素进行分析，统计主导影响因子的 q 值 (图 6a)。同时，为了解不同因子之间对 FVC 空间分布影响是否存在显著差异，对影响因子做生态探测 (图 6b, 0.05 显著水平)。其中，年降水总量 (X6) 的 q 值最高 (0.669)，是 FVC 空间分布最主要的影响因素；年平均相对湿度 (X7) 是第三重要影响因素 (q 值 0.552)，这与植被在干旱半干旱区水分主要限制因素相吻合。研究区高程 (X3, q 值 0.563) 和年降水量 (X6) 的 q 值相对较高，高程作为次重要的影响因素，与降水在生态检测中为 Y，表示对于 FVC 的空间分布而言，降水和高程存在显著差异，即高程和降水对 FVC 的空间分布影响的机理不同。而年均气温 (X5, q 值 0.533) 和年平均气压 (X9, q 值 0.501) 虽然 q 值相对较高，但考虑到本区的高程变化对气温和气压的影响，可以认为，气温、气压对 FVC 空间分布的影响实质是高程的间接作用。

土壤类型 (X1, q 值 0.436) 对于研究区 FVC 空间分布的解释力中等，原因可能是本区植被类型相对单一，以草地为主 (图 51)，受土壤因素影响相对较小。坡度 (X4, q 值 0.220) 除了中部和南部山谷变化较大外，总体变化范围较小 (0°～26.87°)，对 FVC 空间分布的解释力相对较弱。而人口密度、人均地区生产总值和土地利用方式等人类活动因素 (X10～X12)，q 值在 0.235～0.339，对 FVC 空间分布的解释力较弱。

综合各因子，从 FVC 空间分布特征分析，降水是主导的影响因子，而其他影响因子的作用则存在区域差异。本区位于吐鲁番以南、兰州西南方向有巴颜喀拉山、阿尼玛卿山等一系列的峰西北—东北走向的高山，受高程 (X3, q 值 0.563) 变化影响，气压 (X9, q 值 0.501) 显示出东北—西南递减的特征 (图 5b)，降水 (X6, q 值 0.669) 显示从东南到西北的递减梯度变化；同时湿润气流受到山体的抬升和降温作用，从而在迎风部形成降雨区，有利于植物生长，植被覆盖度较高。而本区中部和东北部地区，高程和坡度变化相对较小，FVC 空间分布主要受降水、湿度、土壤类型、土地利用方式等因素限制，且多沙地和沙地分布，除黄河沿岸的宁夏平原和河套平原外，其他地区 FVC 较低。总体上，对研究区 FVC 空间分布的影响：气候类环境因素 > 非气候类环境因素 > 人类活动因素。

3.3 影响因素的交互作用

研究影响因素间交互作用目的是了解当两种影响因子同时作用于因变量 Y 时，其交互作用对因变量 Y 的解释程度。依据交互作用结果的不同，一般存在 5 种情况，分别为非线性减弱 |q (X1 ∩X2) < Min[q(X1), q(X2)]|，单因子非线性减弱 | Min[q(X1), q(X2)] < q (X1 ∩X2) < Max[q(X1), q(X2)]|，双因子增强 | [q(X1 ∩X2) > Max[q(X1), q(X2)]]。
q(X2)]独立[q(X1 \cap X2) = q(X1) + q(X2)] 和非线性增强[q(X1 \cap X2) > q(X1) + q(X2)]。对黄河上游的 FVC 空间分布影响因素进行交互探测检验（图 7）。

结果表明，任意两种影响因素的交互作用基本都表现为双因子增强。其中，土壤类型 \cap 降水量 (X1 \cap X6, q 值 0.777) 和降水量 \cap 土地利用方式 (X6 \cap X12, q 值 0.775) 的交互作用对研究区 FVC 空间分布特征具有最强的解释力。结合 3.2 的分析，说明以降水量为主导，降雨分别和土地类型、土地利用方式的共同作用，对 FVC 空间分布的影响作用最大。由于气温、气压和高程间存在规律性且生态监测为 N，即气温、气压和高程对 FVC 空间分布的影响具有相同的机理，所以土壤类型 \cap 高程 (X1 \cap X3, q 值 0.728)、土壤类型 \cap 气温 (X1 \cap X5, q 值 0.715) 和土壤类型 \cap 气压 (X1 \cap X9, q 值 0.704) 的作用机理相同且解释力相近；同理，气温 \cap 降水 (X5 \cap X6, q 值 0.699) 和高程 \cap 降水 (X3 \cap X6, q 值 0.695)、气温 \cap 湿度 (X5 \cap X7, q 值 0.708) 和高程 \cap 湿度 (X3 \cap X7, q 值 0.699) 存在相同的作用机理。降水和湿度具有空间分布的一致性（图 4f、4g），且对 FVC 的空间分布的影响不具有显著差异（生态监测为 N），说明降水和湿度对 FVC 空间分布的作用机理相似，但其交互作用 (X6 \cap X7, q 值 0.704) 具有更强的解释力。由以上的分析可知，对 FVC 空间分布特征的影响主要在于降水、高程（进一步影响了气温和气压）、土地利用方式和土壤类型间的交互作用。并且可以发现土地利用方式和土壤类型在主导因子探测中解释力相对较弱，而与在与其他因子的交互作用中具有较强的解释力，说明土壤类型和土地利用方式的影响在满足一定的高程、降水和湿度情况下才能体现出来。

值得注意的是降水 \cap 土地利用方式 (X6 \cap X12, q 值 0.775)、高程 \cap 土地利用方式 (X5 \cap X12, q 值 0.715) 和降水 \cap 人均地区生产总值 (X6 \cap X11, q 值 0.706) 等环境因素和人类活动因素的交互作用的解释力较强，而在主导影响因子的分析中人类活动因素的驱动作用并不明显（单因子 q 值 0.235 ~ 0.339），这表明人类活动因子的空间分布特征对 FVC 空间分布影响较弱，而在与降水和高程等环境因子的共同作用下，则更容易影响 FVC 的空间分布。

4 讨论和结论

4.1 讨论

本研究利用 FVC 数据探讨了黄河上游地区 FVC 的空间分布状况，使用地理探测器工具定量分析了 FVC 空间分布的主要影响因素和不同因素间的影响作用。总体来看，研究区多年来 FVC 生长状况趋于改善[4-6]，空间分布特征变化不大。其中腾格里沙漠、兰州以北、西宁西北等地区人为干预较
少，基本保持稳定；河套平原、宁夏平原、西宁北部，兰州东南部则以增加为主，这可能与中国近几十年实行的退耕还林还草等生态保护措施有关。由于乌素沙漠和河套沙漠受人为因素的影响较大，植被覆盖度下降明显，而西南地区则因生态建设工程的缺失，FVC呈现退化的趋势。阴山南麓作为我国生态环境高度敏感区，土地退化、沙漠化严重，植被覆盖度降低。

研究中人类活动对 FVC 空间分布的影响相对较小，而与其他因子的交互作用具有更强的解释力。主要原因可能有以下几点。首先，人类活动受到气候、地形等因素的综合影响，主要分布于低海拔，低区域降水相对较多的地区，尤其在西部、新疆和三地省区城市的部分地区，人类活动较为集中，而在南部与中部高海拔山区和西部格里苏等区域人口密度较少，人类活动对自然生态的影响，一系列生态建设工程使得人类活动对 FVC 空间分布的关系更为复杂，破坏了人类自然发展条件下的空间分布规律；其次，人类活动在不同的气候条件下对生态环境表现出正负不同的影响作用。如在气候条件较好的情况下对生态环境表现为正影响，而在研究区西南部与阿尼玛卿山南端及周边地区，水热条件较差，生态建设工程缺失，人类活动则表现出负影响。所以，本文所述的人类活动更多的体现在人类空间活动上，而对退耕还林还草、封山育林等生态保护作用的体现相对较小，但人类活动和降水、高程等因素交互时，作用则能得到很好地体现。

本文研究重点在于研究区 FVC 空间分布的影响因素，考虑了多种因素对 FVC 空间分布的影响作用。虽然研究区 FVC 总体空间分布比较稳定，但局部地区仍发生了变化，所以，在接下来的研究中可以使用不同因子的变化特征进一步探讨研究区 FVC 变化的驱动因素。

4.2 结论

（1）近年来，黄土高原植被覆盖度（FVC）总体上以改善为主，局部 FVC 存在变化，但 FVC 整体的空间分布特征比较稳定。

（2）降水是黄土高原地区 FVC 空间分布的主要影响因素，其他影响因子的作用则存在区域差异，表现为研究区南部受地形和气压的综合作用降水量较高，植物生长状况较好；而中部和东北部地区地形因子变化较小，FVC 主要受降水、湿度、土地利用方式下垫面土壤类型等因素限制，形成了除河套平原和宁夏平原 FVC 较高外，其他地区较低的特点。

（3）降水量分别与土壤类型、土地利用方式的交互作用对研究区 FVC 空间分布起主导作用，且土壤类型和土地利用方式的影响只有在一定的高程、降水和湿度等因素的影响下才得以体现。

（4）总体来看，对 FVC 空间分布的影响：气候类环境因素 > 非气候类环境因素 > 人类活动因素。虽然人类活动单因子对研究区 FVC 空间分布的解释力不强，但与降水、高程等环境因子的共同作用能够更充分地解释 FVC 空间分布。

（5）降水、土壤、高程和土地利用方式等共同作用，主导了 FVC 的空间分布特征。但就目前来看，土壤和高程因素可干预性较小，所以，对该地区的生态恢复应重点放在降水的充分利用和土地利用方式改进上，根据降水和土地利用的空间分布特点，提出合理的管理和治理措施。

参考文献（References）：

ds

ChinaXiv:201909.00103v1

ChinaXiv合作期刊
参考文献

Spatial Distribution of Vegetation Coverage and Its Affecting Factors in the Upper Reaches of the Yellow River

PEI Zhi-lin1,2, YANG Qin-ke1,3, WANG Chun-mei3, PANG Guo-wei3, YANG Li-hua1,2

1. Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources
 Yangling 712100, Shaanxi, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Urban and Environment Sciences, Northwest University, Xi’an 710127, Shaanxi, China

Abstract: The ecosystem in the upper reaches of the Yellow River is fragile, and it is affected by the unique ecological environment and relatively simple vegetation types. The distribution of fractional vegetation cover (FVC) and its driving factors provide a reference for local vegetation protection. In this paper, the monthly data of MODISIM NDVI (2000 – 2015) were used to calculate the maximum FVC in the upper reaches of the Yellow River and analyze its distribution and characteristics. Moreover, the corresponding proxy variables were used to quantitatively study the affecting factors of FVC by using the geographical detector (Geodetector) model based on the statistics theory and considering the topographical, geological and climatic factors as well as human activities. The study showed that: ① The FVC in the upper reaches of the Yellow River was improved. The spatial distribution of FVC was stable even if there was a slight fluctuation; ② The distribution of FVC was mainly affected by annual precipitation. There were some regional differences in the effects of other factors, for example, the distribution of FVC in the southwest of the study area was subject to the joint effect of topography and pressure, the effects of topographic factors in the central and northeast regions were relatively low, and the FVC was mainly subject to precipitation, humidity, land use types, soil types and underlying surface; ③ The interaction between the annual precipitation and the soil types and land use types was dominant to affect the spatial distribution of FVC; ④ Holistically, the factors affecting the spatial distribution of FVC were in an order of climatic environment factors > non-climatic environmental factors > human activities. The interaction of human activities with environmental factors (such as precipitation) could be used to fully explain the spatial distribution of FVC; ⑤ In the ecological restoration in this area, the full utilization of precipitation and the improvement of land use ways should be focused on.

Key words: fractional vegetation cover (FVC); spatial stratified heterogeneity; affecting factor; Geodetector; upper reaches of the Yellow River