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Abstract: There are eight provinces and autonomous regions (Gansu Province, Ningxia Hui Autonomous 
Region, Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous Region, Tibet Autonomous 
Region, Qinghai Province, Shanxi Province, and Shaanxi Province) in Northwest China, most areas of  
which are located in arid and semi-arid regions (northwest of  the 400 mm precipitation line), accounting 
for 58.74% of  the country's land area and sustaining approximately 7.84×106 people. Because of  drought 
conditions and fragile ecology, these regions cannot develop agriculture at the expense of  the 
environment. Given the challenges of  global warming, the green total factor productivity (GTFP), taking 
CO2 emissions as an undesirable output, is an effective index for measuring the sustainability of  
agricultural development. Agricultural GTFP can be influenced by both internal production factors (labor 
force, machinery, land, agricultural plastic film, diesel, pesticide, and fertilizer) and external climate factors 
(temperature, precipitation, and sunshine duration). In this study, we used the Super-slacks-based measure 
(Super-SBM) model to measure agricultural GTFP during the period 2000–2016 at the regional level. Our 
results show that the average agricultural GTFP of  most provinces and autonomous regions in arid and 
semi-arid regions underwent a fluctuating increase during the study period (2000–2016), and the 
fluctuation was caused by the production factors (input and output factors). To improve agricultural 
GTFP, Shaanxi, Shanxi, and Gansu should reduce agricultural labor force input; Shaanxi, Inner Mongolia, 
Gansu, and Shanxi should decrease machinery input; Shaanxi, Inner Mongolia, Xinjiang, and Shanxi 
should reduce fertilizer input; Shaanxi, Xinjiang, Gansu, and Ningxia should reduce diesel input; Xinjiang 
and Gansu should decrease plastic film input; and Gansu, Shanxi, and Inner Mongolia should cut 
pesticide input. Desirable output agricultural earnings should be increased in Qinghai and Tibet, and 
undesirable output (CO2 emissions) should be reduced in Inner Mongolia, Xinjiang, Gansu, and Shaanxi. 
Agricultural GTFP is influenced not only by internal production factors but also by external climate 
factors. To determine the influence of  climate factors on GTFP in these provinces and autonomous 
regions, we used a Geographical Detector (Geodetector) model to analyze the influence of  climate factors 
(temperature, precipitation, and sunshine duration) and identify the relationships between different climate 
factors and GTFP. We found that temperature played a significant role in the spatial heterogeneity of  
GTFP among provinces and autonomous regions in arid and semi-arid regions. For Xinjiang, Inner 
Mongolia, and Tibet, a suitable average annual temperature would be in the range of  7°C–9°C; for Gansu, 
Shanxi, and Ningxia, it would be 11°C–13°C; and for Shaanxi, it would be 15°C–17°C. Stable climatic 
conditions and more efficient production are prerequisites for the development of  sustainable agriculture. 
Hence, in the agricultural production process, reducing the redundancy of  input factors is the best way to 
reduce CO2 emissions and to maintain temperatures, thereby improving the agricultural GTFP. The 
significance of  this study is that it explores the impact of  both internal production factors and external 
climatic factors on the development of  sustainable agriculture in arid and semi-arid regions, identifying an 
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effective way forward for the arid and semi-arid regions of  Northwest China. 

Keywords: climate change; agricultural GTFP; Super-slacks-based measure (Super-SBM) model; Geodetector; CO2 
emissions; arid regions; semi-arid regions 

 

 

 

1  Introduction 

In a narrow sense, agriculture refers to crop farming that can provide human with essential products, 
including food, vegetables, animal feed, cooking oil, medicines, fibers, and wood. As China has 
the largest population in the world, agriculture which influences livelihoods is particularly 
significant there (Feng et al., 2005; Gollin et al., 2007; Nigussie et al., 2017). The arid and 
semi-arid regions in China occupy about 58.74% of the national land area and sustain a 
population of approximately 7.84×106. Because of the fragile ecological environment, these 
regions cannot sacrifice the environment to develop agriculture, and it is important for them to 
develop sustainable practices. Green total factor productivity (GTFP) is an index for evaluating 
the sustainability of development by comparing effective input and output factors. A large number 
of studies have used GTFP to assess sustainable development across different regions and sectors 
(Feng et al., 2015; Song et al., 2015; Fuinhas et al., 2016; Makijenko et al., 2016; Song et al., 
2016; Wang et al., 2016; Liobikiene et al., 2017; Huang et al., 2018). In the field of agricultural 
research, many researchers have measured the productivity of agriculture based on input and 
output factors (Van Ittersum et al., 2003; Peters et al., 2007). Wu (1995) used a frontier 
production framework to evaluate the increase of total factor productivity (TFP) in China and 
found growth of 50%–60% in the agricultural sector. Chen et al. (2009) suggested that the growth 
in agricultural productivity was higher in the coastal regions and lower in the central and western 
regions and the reason for the lesser productivity of the western regions was their lower marginal 
productivity of land, labor force, capital, and fertilizer input. Tian and Yu (2012) observed that the 
TFP of the Chinese agricultural sector grew by 2% per year in the period 1950–2009. Other 
researchers have suggested that input and output factors during agricultural production processes 
can influence productivity (MacDonald et al., 2000; Olesen and Bindi, 2002; Liu et al., 2005). 

Crop harvests in arid and semi-arid regions are particularly affected by climate. Aridification 
can limit crop yields, which greatly affects agricultural development (Turner, 2004; Saleska et al., 
2007). Over the past 50 years, temperatures have increased significantly in arid and semi-arid 
regions of Northwest China, whereas precipitation has generally decreased. This means that these 
regions have experienced severe and long-lasting droughts (Dai, 2011; Ponce et al., 2013; Xiao et 
al., 2016). Furthermore, only 30%–40% of precipitation is available for crops (Boyer and 
Westgate, 2004; Zhang, 2008). Precipitation is erratic, and crop harvests tend to be irregular 
(Lobell et al., 2008; He et al., 2012; Hu et al., 2014). Global warming also affects crop production 
directly. As Piao et al. (2010) noted, global warming caused a slight decrease in Chinese crop 
production, and the magnitude of this reduction varies between regions. Warming within an 
appropriate range (0.5°C–2.0°C) is good for photosynthesis and crop growth, while extremes of 
temperature will reduce the crop's productivity and degrade its quality (Xiao et al., 2016). 
However, temperatures in arid and semi-arid regions have risen by approximately 1.4°C–3.0°C 
over the past 30 years. This not only influences crop growth directly but also threatens the use of 
water resources by making these areas more vulnerable to drought (Sheffield and Wood, 2008; 
Wang et al., 2011; Ren et al., 2012; Trenberth et al., 2014; Leng et al., 2015; Lei et al., 2016). 
This forms a vicious spiral that threatens the sustainable development of agricultural in these 
regions.  
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As agricultural research has developed, both governments and scholars have become aware of 
the importance of comprehensive assessments that combine climate and production (input and 
output) factors to make complete and systematic evaluations of agricultural production. Such an 
approach can provide an integrated evaluation that enables policy-makers to make appropriate 
decisions (Lee and Tollenaar, 2007; Mueller et al., 2009). Deng et al. (2017) introduced the 
estimation system of agricultural productivity (ESAP) framework to evaluate productivity by 
considering photosynthetic, photothermal, climatic, and land values in agricultural processes. 
Although assessment research in sustainable agricultural development has progressed since 2010, 
analyses of Chinese arid and semi-arid regions remain scarce. Our study aims to quantify GTFP 
changes in the agricultural sector between 2000 and 2016 and to determine the influence of 
climate factors in arid and semi-arid regions of Northwest China. We considered climate change 
factors as outside factors and production (input and output) factors as inside factors. In order to 
evaluate the sustainability of development, we used the Super-slacks-based measure 
(Super-SBM) model to calculate agricultural GTFP with input and output factors for different 
regions. We also utilized the Geographical Detector (Geodetector) model to calculate the 
influence of different climate factors and to explore which factors play a more important role in 
influencing agricultural GTFP in arid and semi-arid regions of Northwest China. 

2  Materials and methods 

2.1  Study area 
We used an agricultural panel dataset of arid and semi-arid regions in Northwest China for the 
period 2000–2016. These arid and semi-arid regions consist mainly of eight provinces and 
autonomous regions (Gansu Province, Ningxia Hui Autonomous Region, Xinjiang Uygur 
Autonomous Region, Inner Mongolia Autonomous Region, Tibet Autonomous Region, Qinghai 
Province, Shanxi Province, and Shaanxi Province) located at 31°90′–53°23′N and 73°40′–
126°04′E. Based on the Chinese classification standard for wet and dry areas, researchers divided 
the arid and semi-arid regions by the 200 mm equipluve (Kunlun Mountains-Tangshan 
Mountains-Inner Mongolian Plateau), while the 400 mm equipluve (Tibet Plateau-Loess 
Plateau-Da Hinggan Ling) is the demarcation line between semi-arid and semi-humid regions 
(Zhang et al., 2016). According to this standard, we divided all provinces and autonomous regions 
under this study into arid and semi-arid regions based on average annual precipitation and 
geographical location. Thus, the arid regions include three provinces and autonomous regions 
(Gansu, Ningxia, and Xinjiang), and the semi-arid regions cover five provinces and autonomous 
regions (Inner Mongolia, Tibet, Qinghai, Shanxi, and Shaanxi).  

Most areas of semi-arid regions are located between the 200 and 400 mm precipitation lines. 
The soil erosion problem in those areas is serious, and the agricultural ecological environment is 
fragile. The main type of vegetation is grassland. Because of the rainless climate, the yield of dry 
farming is unstable. With extensive cultivation and small yields, the farming economy is 
underdeveloped compared to that of the humid and semi-humid regions in China. Most areas of 
the arid regions are located northwest of the 200 mm precipitation line. Owing to long-term 
drought conditions, most of the land resource is desert. The processes of desertification and 
salinization have made most areas unsuitable for the development of agriculture. Only a few areas 
have dry farming and oasis agriculture. Given the harsh climatic conditions, the shortage of water 
resources, and the fragile ecological environment, the studied arid and semi-arid regions need to 
take account of climate characteristics when exploring appropriate and sustainable development 
paths for agriculture. 
2.2  Agricultural data collection 
Following the studies of Chen et al. (2008), Ito (2010), and Kerstens et al. (2018), we regarded 
labor force, machinery, land, agricultural plastic film, diesel, pesticide, and fertilizer as input 
factors. Desirable output was calculated by the value of agricultural yield, and undesirable output 
was measured by the standard CO2 emissions during the production process. In line with previous 
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studies, labor force was measured by the number of agricultural labors, machinery by the total 
power of agricultural machinery, and land by the total area sown. Plastic film, diesel, pesticide, 
and fertilizer were directly represented by the amounts used in the agricultural production 
process. Agricultural yield is represented by the gross output value and was calculated in line with 
prices for the year 2000, and standard CO2 emissions are the emission coefficients of input 
factors. 

Since China became the world's largest emitter of greenhouse gases in 2008, sustainable 
agricultural development with regard to greenhouse gas emissions has been a focus of national 
attention (Liu et al., 2013, 2016). Greenhouse gas emissions play an important role in climate 
change and are a by-product of the cultivation of crops. The main sources of agricultural 
emissions are the use of diesel, pesticide, chemical fertilizer, and plastic film as well as irrigation 
and plowing processes. To take account of the greenhouse effect, we converted greenhouse gases 
to standard CO2 emissions. Following the research of Liu et al. (2018), we calculated CO2 
emissions based on the emission coefficient during the cultivation process. The carbon emission 
coefficients of main carbon sources are shown in Table 1. 

Table 1  CO2 emission coefficients during the cultivation process 
Source of carbon Emission coefficient Reference source 

Fertilizer (kg CE/kg)   0.8956 Oak Ridge National Laboratory (ORNL), United States 
Pesticide (kg CE/kg)   4.9341 Oak Ridge National Laboratory (ORNL), United States 

Plastic film (kg CE/kg)   5.1800 Institute of Resource, Ecosystem and Environment of Agriculture of 
Nanjing Agricultural University (IREEA), China 

Diesel (kg CE/kg)   0.5927 Intergovernmental Panel on Climate Change (IPCC), United Nations 
Irrigation (kg/km2) 266.4800 Duan et al. (2011), China 
Plowing (kg/km2) 312.6000 China Agricultural University (CAU), China 

Note: ''kg CE'' stands for kilogram of coal equivalent (energy intensity). 

Except for CO2 emissions, data of other input and output factors were collected from the China 
Rural Statistical Yearbook (NBSC, 2001–2017a), and all monetary variables were deflated to the 
price level of the year 2000. The regional climate factors discussed below are represented by the 
temperature, precipitation, and sunshine duration data for their capital cities, taken from the 2000 
to 2016 editions of China Statistical Yearbook (NBSC, 2001–2017b). Because of the authenticity 
and credibility of the China Rural Statistical Yearbook and the China Statistical Yearbook, many 
studies of agriculture have used data from the same sources (Xu et al., 2015; Rigoberto et al., 
2017; Shen et al., 2018; Wang et al., 2019; Zhang et al., 2019).  
2.3  Super-SBM model 
Many studies have used Data Envelopment Analysis (DEA) methods to analyze GTFP in the 
agricultural sector (e.g., Heidari et al., 2012; Blancard and Martin, 2014; Pang et al., 2016). As 
they have no predefined production function, DEA models allow the creation of a production 
frontier with the best input and output ratio of production factors through the optimized results of 
a linear program. In radial DEA models, the measurement of inefficiency includes only 
proportional reduction and enlargement of all inputs and outputs. Because of this limitation, the 
distance between the inefficient decision-making unit (DMU) and the most effective target 
contains slack improvement, which cannot be presented in the efficiency measurement of radial 
DEA models. Unlike radial DEA models, slacks-based measure (SBM) models are good at 
dealing directly with slacks of input and output to eliminate radial as well as oriented deviation. It 
is clear that undesirable outputs are unavoidable in any production process, and it is necessary to 
take account of them in an efficiency evaluation model (Seiford and Zhu, 2002). Among the 
possible methods of processing undesirable outputs, SBM stands out because it fits the production 
process perfectly. However, in the process of evaluating the efficiency of the DMU using the 
traditional SBM models, it is often the case that multiple DMU efficiency values are equal to 1, 
especially under the condition of multiple input and output indicators. This makes it impossible to 
further distinguish the efficiency value between the effective decision-making units (DMUs). To 
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resolve this difficulty, Andersen and Petersen (1993) proposed the Super Efficiency model, and 
Tone (2002) proposed the Super-SBM model. Following Cheng (2014), the Super-SBM model 
with undesirable output is described as follows: 
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We suppose that there are n DMUs (DMUj, j=1, 2, …, n) and that each of them represents a 

province or autonomous region of China. Each DMU utilizes m inputs xij (i=1, 2, …, m) to 
produce q1 desirable outputs yrj (r=1, 2, …, q1) and discharge q2 undesirable outputs btj (t=1, 
2, …, q2). DMUk is the province or autonomous region being measured, xik is its input factors, yrk 
is its desirable outputs, and btk is its undesirable outputs. In Equation 1, s.t. means "subject to", 
and λj (j=1, 2, …, n) is the nonnegative intensity variable associated with each DMUj by 
combining the inputs and outputs. s– 

i , s+ 
r , and sb_ 

t  are the slack variables denoting an excess of 
inputs, a shortage of desirable outputs, and an excess of undesirable outputs, respectively. The 
numerator and denominator of the target function ρ evaluate the average distance from the real 
inputs and outputs to the frontiers of production. If ρ≥1, it indicates that a production unit is 
efficient.  
2.4  Geodetector 
Climate change can influence crop productivity (Yao et al., 2011). In this study, we used the 
Geographical Detector (Geodetector) model to analyze the influence of climate change on 
agricultural GTFP. Geodetector is a model for measuring the spatial stratified heterogeneity 
(SSH), and it consists of a factor detector, an interaction detector, a risk detector, and an 
ecological detector. Jin et al. (2018) claimed that light, temperature, and water conditions are the 
main factors that influence agricultural productivity, so we investigated the factor, interaction, 
ecological and risk influences of temperature, precipitation, and sunshine duration on GTFP. 

The basic assumption of Geodetector is that the study region can be divided into several 
sub-regions. If the sum of the variances of the sub-regions is smaller than the total variances of 
the region, a spatial differentiation exists. If the spatial distributions of two variables tend to 
agree, there is a statistical correlation between them. Geodetector uses the q statistic to measure 
the spatial differentiation, detect the explanatory factors, and analyze the interaction between 
variables (Wang et al., 2010). 
2.4.1  Factor detector 
The factor detector can detect to what extent a certain factor x explains the spatial differentiation 
of variable y. We used the q value to explain this degree. Factor xh can be divided into h (h =1, 2, 
…, L, where L is the total number of h) parts; likewise, we divided the variable yi. σ2 

h  and σ2 are 
variances of yi in strata h and the whole of yi, while hY  and Y  are the average yi of strata h and 
the whole of yi, respectively. The q statistic expression is as follows: 

2
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=

= =∑                           (3) 

where SSW and SST are the sum of squares within h and the total sum of squares of yi, 
respectively; and Nh and N are the units of yi in h and yi in total, respectively. The q values range 
from 0 to 1. 

The bigger the q value, the greater the explanatory power of x to y. If q=1, it indicates that x 
explains the spatial distribution of y completely; while if q=0, it indicates that x has no 
relationship with y. The q value means that x can explain 100×q% of y. 

A simple transformation of the q statistic satisfies a non-central F distribution (Wang et al., 
2016): 
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where λ is a non-central parameter. 
2.4.2  Interaction detector 
The interaction detector was used to identify the interaction relationship between different factors 
and evaluate their combined effect to see whether any pair of factors working together will 
increase or decrease the explanatory power of the dependent variable yi (or whether the influences 
of these factors are independent). The method of evaluation was, first, to calculate the q values of 
the two factors x1 and x2 for yi separately to obtain q(x1) and q(x2), respectively. Second, the q 
value of their interactions was calculated (two strata superimposed to form a new polygonal 
distribution) to obtain q(x1∩x2). Finally, q(x1), q(x2), and q(x1∩x2) were compared to find the 
interaction relationship. If q(x1∩x2)<min(q(x1), q(x2)), the combined effect of factors x1 and x2 will 
decrease the explanatory power of yi in a nonlinear manner. If min(q(x1), 
q(x2))<q(x1∩x2)<max(q(x1)∩q(x2)), the effects of factors x1 and x2 are mutually exclusive and both 
of them will decrease the explanatory power of yi in a nonlinear way. If q(x1∩x2)>max(q(x1), 
q(x2)), the combined effect of factors x1 and x2 will enhance their explanatory power of yi. If 
q(x1∩x2)=q(x1)+q(x2), the effects of factors x1 and x2 are mutually exclusive. If 
q(x1∩x2)>q(x1)+q(x2), the combined effect of factors x1 and x2 will enhance the explanatory power 
of yi in a nonlinear manner. 
2.4.3  Risk detector 
The risk detector was used to find significant differences in the mean value between sub-regions, 
and to test them with the t statistic: 
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where hy  is the calculation of the average values of samples yi in h; hY  represents the average 
value of yh (h=1, 2, …, L); nh is the sample size of the sub-region of h; Var denotes the variance; 
and the t statistic approximately obeys the student's t distribution, where the degree of freedom 
(df) was calculated as follows: 
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The null hypothesis H0 is expressed as: 1hY = =Y. If H0 is rejected at the confidence level α, then 
there is a significant difference in the mean value of yi between sub-regions.  
2.4.4  Ecological detector 
The ecological detector was used to compare whether the effects of any two factors on the spatial 
distribution of yi are significantly different and to measure the difference with the F statistic: 
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where Nx1 and Nx2 are the sample sizes of factors x1 and x2, respectively; SSWx1 and SSWx2 are the 
sums of intra-strata variances of x1 and x2, respectively; and L1 and L2 represent the values of h for 
x1 and x2, respectively. The null hypothesis H0 is expressed as: SSWx1=SSWx2. If H0 is rejected at 
the level of significance of α, there is a significant difference in the effect of the two factors x1 and 
x2 on the spatial distribution of GTFP. When using the Geodetector model, if the independent 
variable is a numerical magnitude, it needs to be discretized. In this study, we discretized the 
dependent variables directly by dividing them equally. 

3  Results 

3.1  Descriptive statistics for input and output factors (Super-SBM model) 
Before using the Super-SBM model to measure GTFP, we carried out a basic statistical analysis 
of input and output factors in the estimation. The results are presented in Table 2. From the values 
for the mean and standard deviation, we can observe obvious variations of input and output 
factors between arid and semi-arid regions in different years. To establish the source of the 
variations, we calculated the average values and growth rates for agricultural input and output 
factors. The results are presented in Tables 3 and 4, respectively. Taken together with Table 3, 
these results show that all input and output factors of agriculture in Ningxia, Tibet, and Qinghai 
were lower than average, whereas the values in Inner Mongolia were higher than average. For 
Gansu, the input factors of fertilizer and diesel were lower than average, but for Xinjiang, only 
the labor force input factor was lower than average. For Shanxi, the diesel and plastic film inputs 
were lower than average, as were the input factors of plastic film and pesticide in Shaanxi. With 
these exceptions, all input and output factors for these regions were higher than average. The gaps 
in input and output levels between Ningxia, Tibet, Qinghai, and the other regions were very large, 
and this was one of the main sources of the standard deviation (see Table 2), along with time 
differences (see Table 4). 

Table 2  Descriptive statistics for variables used in the Super-slacks-based measure (Super-SBM) model 
Variable type Variable Mean Standard deviation 
Input factors Number of agricultural labor force (×104 persons) 1165.3802 787.6478 

 Total power of agricultural machinery (×104 kW) 1424.8896 960.7656 
 Volume of effective component of fertilizer (×104 t) 89.1750 71.8066 
 Use of agricultural diesel (×104 t) 32.3338 25.3809 
 Use of agricultural plastic film (×104 t) 5.1745 6.0462 
 Use of agricultural pesticide (×104 t) 1.5174 1.6592 
 Total sown area of farm crops (×103 hm2) 3121.5603 2140.6714 

Output factors Gross output value of agriculture (×108 CNY, at 2000 constant price) 306.0458 234.7596 
 CO2 emissions (×104 t) 217.4791 157.7604 

Table 4 shows the growth rate of input and output factors from 2000 to 2016. In these arid and 
semi-arid regions, all input factors, with the exceptions of labor force and land input, increased 
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from 2000 to 2016. For labor force input over the same period, Xinjiang and Tibet experienced a 
positive increase, while other regions experienced a negative increase. The growth rate in 
Xinjiang was the highest (35.68%), and the greatest decrease was in Shaanxi (–38.48%). For land 
input, Shanxi, Qinghai, and Shaanxi had a negative increase, while the other regions had a 
positive increase. Shaanxi had the greatest decrease in land input (–6.74%), whereas Xinjiang 
experienced the highest increase in land input (80.69%). In all regions, there was a tendency for 
machinery, fertilizer, diesel, plastic film, and pesticide inputs to increase over time. For 
machinery input, Tibet experienced the highest increase (454.67%) and Shanxi the lowest 
(2.53%). For fertilizer input, Xinjiang had the highest increase (215.91%) and Qinghai the lowest 
(22.22%). For diesel input, Tibet increased 785.71% (the highest increase) and Qinghai only 
8.47% (the lowest increase). For plastic film input, the increase rate in Tibet was the highest 
(1700.00%) and the increase rate in Shaanxi was the lowest (72.73%). For pesticide input, Gansu 
increased most (513.16%) and Qinghai least (0.00%). With the exception of the yield in Tibet, all 
other output factors increased. The rate of desirable output (yield) in Ningxia rose by 232.79%, 
while Tibet showed a decrease of –13.65%. Xinjiang had the highest increase in undesirable 
output (CO2 emissions) (148.84%), while the increase in Shanxi was the lowest (18.53%). 
Table 3  Average values of agricultural input and output factors in arid and semi-arid regions during 2000–2016 

Region 
Province/ 

Autonomous 
region 

Labor 
Force 
(×104 

persons) 

Machinery 
(×104 kW) 

Fertilizer 
(×104 t) 

Diesel 
(×104 t) 

Plastic 
Film 

(×104 t) 

Pesticide 
(×104 t) 

Land 
(×103 hm2) 

Earnings 
(×108 
CNY) 

CO2 
Emissions 

(×104 t) 

Arid Gansu 1799.4180 1752.1940 81.5529 26.8824 11.3788 4.1811 3909.8470 388.6244 273.9565 
 Ningxia 355.0647 627.2294 33.3706 17.2529 1.0324 0.2182 1179.5180 96.6187 78.3374 
 Xinjiang 1136.8940 1530.3290 151.1882 59.6412 16.1241 1.8047 4461.7940 531.6966 383.4737 

Semi- Tibet 226.8471 345.2588 4.4353 2.7294 0.0859 0.0929 239.1765 25.8114 12.9417 
arid Shanxi 2001.4290 2470.2410 103.7412 27.6823 3.8182 2.4718 3781.5060 380.3657 243.2440 

 Qinghai 323.8235 365.8294 8.0941 5.8235 0.3171 0.1871 522.7882 37.3417 27.3607 
 Shaanxi 2289.5120 1773.7060 180.0824 65.1411 3.1341 1.1465 4217.3530 525.5955 335.4848 

 Inner 
Mongolia 1190.0530 2534.3290 150.9353 53.5177 5.5053 2.0365 6660.5000 462.3124 385.0342 

Average  1165.3802 1424.8896 89.1750 32.3338 5.1745 1.5174 3121.5603 306.0458 217.4791 

Table 4  Growth rate of agricultural input and output factors in arid and semi-arid regions during 2000–2016 

Region 
Province/ 

Autonomous 
region 

Growth rate (%) 
Labor 
force Machinery Fertilizer Diesel Plastic 

film Pesticide Land Earnings CO2 
emissions 

Arid Gansu –28.9125 80.1400 44.8062 183.3333 203.8941 513.1579 14.4511 145.9105 74.5302 
 Ningxia –24.0474 52.5223 72.4576 95.6522 214.5833 62.5000 21.0231 232.7867 57.0062 
 Xinjiang 35.6767 199.8355 215.9091 121.1587 202.1566 102.9412 80.6876 134.5649 148.8370 

Semi- Tibet 7.4723 454.6725 136.0000 785.7143 1700.0000 57.1428 10.6880 –13.6474 86.7169 
arid Shanxi –30.5950 2.5275 34.5977 28.6344 77.1739 74.8571 –6.3576 174.4045 18.5313 

 Qinghai –14.7356 79.0008 22.2222 8.4746 1216.6670 0.0000 –0.7585 117.6976 20.6629 
 Shaanxi –38.4843 108.2558 77.6677 66.3082 72.7273 28.1553 –6.7415 168.9692 39.7402 

 Inner 
Mongolia –28.9657 146.6933 213.6364 170.9030 176.3006 262.9213 29.2709 119.9713 98.7764 

In summary, the data for sown areas and for output values in these arid and semi-arid regions 
showed increases, which indicate an expansion of the scale of agricultural production over the 
period. The labor force input of arid and semi-arid regions decreased by 10.65% and 31.45%, 
respectively, while the machinery input increased by 120.06% and 86.80%, respectively. This 
implies a growing tendency to use machinery rather than labor force in agricultural production. 
Land input increased in all arid regions but decreased in all semi-arid regions, except for Inner 
Mongolia. The use of other input factors, including fertilizer, diesel, plastic film, and pesticide, 
increased substantially in both arid and semi-arid regions, especially the use of plastic film 

ch
in

aX
iv

:2
02

01
1.

00
13

1v
1

ChinaXiv合作期刊



 FENG Jian et al.: Can climate change influence agricultural GTFP in arid and semi-arid regions…  

 

 

(203.18% and 123.60% in arid and semi-arid regions, respectively) and pesticide (274.07% and 
97.50%, respectively). The growth rates for desirable output (agricultural earnings) were almost 
the same in arid (145.89%) and semi-arid (146.86%) regions. All other provinces and autonomous 
regions exhibited a positive growth in both arid and semi-arid regions, with only Tibet showing a 
negative growth. Undesirable output (CO2 emissions) increased greatly over the period (107.69% 
in arid regions and 53.12% in semi-arid regions). Given the climate change effects of CO2 
emissions, this increase is a matter of great importance. 
3.2  Dynamic changes in GTFP 
Application of the Super-SBM model allowed us to determine the gap in agricultural sustainable 
development between arid and semi-arid regions by estimating their GTFP. Figure 1 shows the 
results for regional agriculture GTFP in the study area for the period 2000–2016. With the 
exception of Xinjiang and Tibet, all arid and semi-arid regions showed a similar pattern of 
variation. They exhibited a fluctuating increase from 2000 to 2006, and then a decrease in 2007 
followed by another fluctuating increase from 2008 to 2016. The GTFP in Xinjiang and Tibet 
started at higher levels than in the other regions. However, the GTFP of Xinjiang maintained its 
high level while the GTFP of Tibet dropped sharply. The GTFP levels of Shanxi and Qinghai 
were at their lowest in 2000. Those of Ningxia, Shaanxi, and Shanxi increased gradually, while 
other regions increased with some fluctuations. 

 

Fig. 1  Estimation results for regional agricultural green total factor productivity (GTFP) in arid (a) and 
semi-arid (b) regions during 2000–2016 

Dynamic changes of input and output slacks in arid and semi-arid regions during 2000–2016 are 
shown in Figure 2. For arid regions, the GTFP of almost all provinces and autonomous regions 
fluctuated because of input and undesirable output slacks. The GTFP of Xinjiang stayed at a 
comparatively high level because of its comparatively low input and output inefficiency. Sharp 
declines were mainly due to redundant inputs of diesel, land, and plastic film in 2001, and of land, 
fertilizer, and plastic film in 2007 and 2008. Substantial increases were resulted mainly from the 
decrease in slacks of diesel, land, and plastic film in 2006, and of land, fertilizer, and plastic film in 
2015. Undesirable CO2 output was also an important factor in both increases and decreases. For 
Ningxia, the GTFP dropped in 2007 because of diesel and fertilizer input slacks, and the 
comparatively sharp increase in 2015 was due to a decrease in slacks of diesel and fertilizer. Gansu 
showed a decrease of GTFP in 2007, mainly because of redundant inputs of machinery, fertilizer, 
pesticide, diesel, and CO2 output, and again in 2011, mainly due to redundant inputs of machinery, 
plastic film, pesticide, and CO2 output. The sharp increase in 2016 was resulted from reductions of 
redundancy in machinery, fertilizer, pesticide, diesel, and plastic film inputs and CO2 output. 

In semi-arid regions, the GTFP levels of Qinghai and Tibet were mainly influenced by 
insufficient desirable output, whereas the GTFP in other provinces and autonomous regions 
fluctuated because of slacks in input and undesirable output factors. The decrease in GTFP in 
Inner Mongolia was greater in the years 2003 and 2007; reductions in fertilizer, pesticide, diesel, 
and plastic film inputs were the main reasons for the increase in 2003, whereas reductions in 
fertilizer and diesel inputs and CO2 output were the main factors in 2007. In Shanxi and Shaanxi, 
various agricultural inputs, including fertilizer and diesel, were redundant in 2007, leading to a 
lower GTFP. The increase of GTFP in Shanxi in 2009 can be attributed to decreases in fertilizer,  
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Fig. 2  Dynamic changes of agricultural input and output slacks in arid and semi-arid regions during 2000–2016. 
(a), labor force; (b), machinery; (c), fertilizer; (d), diesel; (e), plastic film; (f), pesticide; (g), land; (h), earnings; 
(i), CO2 emissions. Negative value means redundancy and positive value means deficiency. 
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plastic film, pesticide, and diesel inputs and redundant CO2 output; in Shaanxi, the reduction of 
machinery slacks was responsible. The increase of GTFP in Shanxi in 2016 was due to the 
decrease of machinery input; the reason for the increase in Shaanxi in 2009 was a decrease in the 
redundancy of diesel, whereas the increase in 2016 was due to a decrease of redundancy in 
machinery, fertilizer, and diesel. Tibet's GTFP was in a strong position initially, as there had been 
almost no redundant inputs; however, insufficient desirable output led to a lower GTFP. The level 
of agricultural inputs and outputs in Qinghai were all low, accounting for its lower GTFP. 

To sum up, with the exceptions of Tibet and Qinghai, redundancy of inputs and CO2 output are 
the main reasons for decreases in GTFP. Reducing redundancy is therefore the key to increasing 
GTFP in all arid and semi-arid regions, and the situation of each province or autonomous region 
must be taken into account if its input and CO2 output redundancies during agricultural 
production processes are to be reduced in an effective way. Compared to the other provinces and 
autonomous regions, Tibet and Qinghai have little input redundancy, and therefore insufficient 
agricultural earnings are the main reason for their comparatively low GTFP levels. In these cases, 
an effective method of improving GTFP would be to select arable crops with a higher economic 
value. 
3.3  Influence of climate factors on agricultural GTFP (factor detector)  
Table 5 shows the q values for each climate risk factor. The values for temperature, precipitation, 
and sunshine duration are 0.2442, 0.0173, and 0.0203, respectively. This means that temperature 
can explain 24.42% of GTFP, while precipitation and sunshine duration explain 1.73% and 
2.03%, respectively. All P values are greater than 0.95, which means that the results are 
significant with a 95% confidence level. Therefore, all three climate factors have an influence on 
GTFP, and the effect of temperature is greater than the effects of sunshine duration and 
precipitation. 

Table 5  Spatial heterogeneity of agricultural GTFP caused by climate factors 
Statistic Temperature Precipitation Sunshine duration 

q statistic 0.2442 0.0173 0.0203 
P value 0.9817 1.0000 1.0000 

3.4  Comparison of influence from climate factors on agricultural GTFP (ecological 
detector) 
As shown in Table 6, if the difference for one of the climate factors in the first column is bigger 
than a factor in the first row, the result is Y, otherwise N. The results show that the differences in 
GTFP between different temperature groups are bigger than those for sunshine duration and 
precipitation, and the difference for precipitation is smaller than that for sunshine duration. Thus, 
different temperatures cause more difference in GTFP than different sunshine durations, whereas 
different sunshine durations cause more difference than different levels of precipitation. 

Table 6  Comparison of climate factor influences on agricultural GTFP 
 Temperature Precipitation Sunshine duration 

Temperature    
Precipitation Y   

Sunshine duration Y N  
Note: If the difference for one climate factor in the first column is bigger than a factor in the first row, the result is Y, otherwise N. 

3.5  Interaction influence of climate factors on agricultural GTFP (interaction detector) 
The results for the interaction detector are given in Tables 7 and 8. According to Table 7, the val-
ues of q(T), q(P), q(S), q(T∩P), q(T∩S), and q(P∩S)  are 0.2442, 0.0173, 0.0203, 0.3004, 0.2981, 
and 0.0550 (T=temperature, P=precipitation, and S=sunshine), respectively. Because 
q(T∩P)>q(T) and q(T∩P)>q(P), combining temperature and precipitation enhances their power 
to explain GTFP. Similarly, because q(T∩S)>q(T) and q(T∩S)>q(S), combining temperature and 
sunshine duration enhances their explanation of GTFP; and because q(P∩S)>q(P) and 
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q(P∩S)>q(S), combining precipitation and sunshine duration enhances their explanation of 
GTFP. As the graphical representations shown in Table 8, each combination of two of the three 
factors (temperature, precipitation, and sunshine duration) enhances their explanation of GTFP in 
a nonlinear way. 

Table 7  Interaction influence of climate factors on agricultural GTFP 
 Temperature Precipitation Sunshine duration 

Temperature 0.2442   
Precipitation 0.3004 0.0173  

Sunshine duration 0.2981 0.0550 0.0203 

Table 8  Interaction types of climate factors 
Climate factor Graphical representation Interaction 

Temperature∩Precipitation  Enhances, nonlinear 

Temperature∩Sunshine duration  Enhances, nonlinear 

Precipitation∩Sunshine duration  Enhances, nonlinear 

Note: , min(q(x1), q(x2)); , max(q(x1), q(x2)); , q(x1)+q(x2); , q(x1∩x2). 

3.6  Risk detector 
The risk detector presents the average GTFP for every group of temperature, precipitation, and 
sunshine duration and identifies whether the GTFP of each group in a row has a significant 
difference from a group in a column; if so, the result is Y, otherwise N. The results can be seen 
from Table 9. The GTFP of temperature range 5°C–7°C has a significant difference from the 
others (7°C–9°C, 9°C–11°C, 11°C–13°C, 13°C–15°C, and 15°C–17°C). When the temperature 
increases to 11°C–13°C, the GTFP reaches its highest point among these six temperature groups. 
The GTFP of temperature range 7°C–9°C is also significantly different from the range 9°C–11°C; 
when the temperature increases to 9°C–11°C, the GTFP goes down. However, the GTFP level of 
temperature range 9°C–11°C is also different from those of temperature ranges 11°C–13°C and  

Table 9  Risk detector results 
Temperature 5°C–7°C 7°C–9°C 9°C–11°C 11°C–13°C 13°C–15°C 15°C–17°C 

Average GTFP 0.3960 0.6615 0.4857 0.6785 0.5673 0.6748 

5°C–7°C       
7°C–9°C Y      
9°C–11°C Y Y     

11°C–13°C Y N Y    
13°C–15°C Y N N N   
Over 15°C Y N Y N N  

Precipitation 0–200 mm 200–400 mm 400–600 mm 600–800 mm Over 800 mm  
Average GTFP 0.5073 0.5749 0.5911 0.5772 0.4411  

0–200 mm       
200–400 mm N      
400–600 mm N N     
600–800 mm N N N    
Over 800 mm N N N N   

Sunshine 1000–1500 h 1500–2000 h 2000–2500 h    

Average GTFP 0.5803 0.5827 0.5804    
1000–1500 h       
1500–2000 h N      
2000–2500 h N N     

Note: Y means that the GTFP of each group in a row has a significant difference from the GTFP of a group in a column; N means that 
the GTFP of each group in a row has non-significant difference from the GTFP of a group in a column. 
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15°C–17°C, and the average GTFP goes up with an increase in temperature. Regions with annual 
mean temperatures around 7°C–9°C, 11°C–13°C, and 15°C–17°C can achieve a higher GTFP, 
mainly because the plantation structure is different and different crops have different optimum 
temperatures for crop growth. The higher GTFP at temperature range 7°C–9°C appears in some 
years in Xinjiang, Inner Mongolia, and Tibet; the higher GTFP at temperature range 11°C–13°C 
appears in some years in Gansu, Shanxi, and Ningxia; and the higher GTFP at temperature range 
15°C–17°C occurs in Shaanxi only. This result is as expected, given that the favorable annual 
average temperature for GTFP of arid and semi-arid regions is in the range of 11°C–13°C, and 
higher or lower temperatures can both decrease agricultural GTFP. There is no significant 
difference of GTFP between different precipitation and sunshine duration groups, which indicates 
that differences in precipitation and sunshine duration do not influence GTFP significantly in arid 
and semi-arid regions. Overall, the suitable annual average temperature for higher GTFP in 
Xinjiang, Inner Mongolia, and Tibet is 7°C–9°C; in Gansu, Shanxi, and Ningxia, it is 11°C–13°C; 
and in Shaanxi, it is 15°C–17°C. Higher or lower temperatures can reduce GTFP, a finding that is 
line with the study of Xiao et al. (2016). 

To sum up, both internal production factors (input and output factors) and external climate 
factors influence GTFP of arid and semi-arid regions. Lower redundancy of input factors (labor 
force, machinery, land, plastic film, diesel, pesticide, and fertilizer) and undesirable output (CO2 
emissions), as well as greater desirable output (agricultural earnings), lead to a higher GTFP. Of 
the three main climate factors (temperature, precipitation, and sunshine duration), the effect of 
temperature plays the most important role in influencing GTFP changes, but combining any two 
factors enhances their influence on GTFP. Different provinces and autonomous regions in arid 
and semi-arid regions have their own optimal temperatures for achieving a higher GTFP, and all 
other temperatures, higher or lower, can reduce GTFP. 

4  Discussion 

In arid and semi-arid regions of Northwest China, fluctuations in GTFP are influenced both by 
slacks in internal production factors (input and output factors) and by external climate factors. 
Regional differences in internal production factors and external climate factors are the main 
reasons for significant spatial differences in GTFP. Our results in this respect are similar to those 
of Liu et al. (2015). Consistent with our findings, some scholars believe that GTFP is not only 
influenced by internal production factors, but that climate change may also lead to declines and 
concomitant fluctuations of GTFP (Kravchenko and Bullock, 2000; Tao et al., 2006). The spatial 
distribution of agricultural productivity generally accords with production factors and is seriously 
influenced by climate change. To improve the GTFP of provinces and autonomous regions in arid 
and semi-arid regions of Northwest China, both internal production factors and external climate 
factors should be taken into account. Because the distributions of production factors and climate 
factors of provinces and autonomous regions in arid and semi-arid regions are different, regional 
differences should also be noted and adjusted for: agricultural labor force should be reduced in 
Shaanxi, Shanxi, and Gansu; machinery input should be reduced in Shanxi, Inner Mongolia, 
Gansu, and Shanxi; fertilizer input should be reduced in Shaanxi, Inner Mongolia, Xinjiang, and 
Shanxi; diesel input should be reduced in Shaanxi, Xinjiang, Gansu, and Ningxia; plastic film 
input should be reduced in Xinjiang and Gansu; and pesticide input should be reduced in Gansu, 
Shanxi, and Inner Mongolia. Likewise, agricultural earnings should be improved in Qinghai and 
Tibet, and CO2 emissions should be reduced in Inner Mongolia, Xinjiang, Gansu, and Shaanxi. 
The suitable annual average temperature for Xinjiang, Inner Mongolia, and Tibet is in the range 
of 7°C–9°C; for Gansu, Shanxi, and Ningxia, it is in the range of 11°C–13°C; and in Shaanxi, it is 
in the range of 15°C–17°C. 

Lower redundancy of input factors (labor force, machinery, land, plastic film, diesel, pesticide, 
and fertilizer) can lead to a higher GTFP. For most provinces and autonomous regions, redundancy 
of inputs is the main reason for a decrease in GTFP. To improve the GTFP of these provinces, 
suitable input factor management should therefore be implemented during agricultural production 

ch
in

aX
iv

:2
02

01
1.

00
13

1v
1

ChinaXiv合作期刊



 JOURNAL OF ARID LAND  

 

processes. Lower redundancy of undesirable output (CO2 emissions) can also lead to a higher 
GTFP, and for most provinces and autonomous regions, redundancy of CO2 output is a principal 
reason for a decrease in GTFP. Input factors such as fertilizer, plastic film, diesel, and pesticide are 
the main sources of CO2 emissions, so improving traditional input factors (such as formula 
fertilization) and expanding the use of clean alternative energies (such as solar energy and natural 
gas) are good ways to reduce CO2 emissions (Fischer et al., 2010). Reducing input redundancy 
during agricultural production processes is also necessary to decrease CO2 emissions, and 
therefore another way to improve GTFP. Finally, increasing desirable output (agricultural earnings) 
can lead to a higher GTFP, particularly in Qinghai and Tibet, where insufficiency of agricultural 
earnings is the main reason for the decrease of GTFP. In these regions, selecting arable crops with 
a higher economic value is likely to be an effective method for improving agricultural earnings 
and, in turn, GTFP. 

Not only internal production factors (input and output factors) but also external climate factors 
can influence the GTFP of arid and semi-arid regions. Of the three climate factors considered here 
(temperature, precipitation, and sunshine duration), temperature plays the most important role in 
influencing GTFP. Different provinces and autonomous regions in arid and semi-arid regions 
have different average temperatures that are favorable for obtaining a higher GTFP. However, as 
China is a large agricultural country, the rapid development of agriculture mechanization and 
excessive use of fertilizer, diesel, plastic film, and pesticide have led to a considerable increase in 
CO2 emissions. For example, plastic film, which can maximize rainwater utilization and help to 
control temperature, is important in arid and semi-arid regions (Li and Gong, 2002; Li and Wang 
et al., 2011; Zhou et al., 2012; Gan et al., 2013; Zhao et al., 2014), but it is also among the main 
sources of CO2 emissions.  

The agriculture of arid and semi-arid regions is at an important stage in its transformation from 
traditional to modern forms (Xu et al., 2017). The differences in GTFP between regions are still 
large, and the input factors are still unbalanced. As Ma and Feng (2013) noted, it is important to 
change production methods to reduce the use of chemical fertilizer and the consumption of energy 
in the agriculture sector. Production factors such as equipment and fertilization efficiency also 
need to be improved. Given the fragile agricultural environment of arid and semi-arid regions, 
more efficient use of agricultural production factors including fertilizer, pesticide, diesel, and 
plastic film should be considered to promote the development of sustainable agriculture.  

5  Conclusions 

The development of sustainable agriculture in arid and semi-arid regions of Northwest China has 
an important role to play in meeting the challenges of global warming. An appropriate means of 
achieving sustainable development is to improve GTFP and manage CO2 emissions more 
effectively. Sustainable agricultural development is influenced by both internal production factors 
and external climate factors. For most provinces and autonomous regions, reducing input 
redundancy can directly increase GTFP by reducing CO2 emissions. Different measures are called 
for in different provinces and autonomous regions: reducing agricultural labor force input in 
Shaanxi, Shanxi, and Gansu; decreasing machine input in Shanxi, Inner Mongolia, Gansu, and 
Shanxi; cutting fertilizer input in Shaanxi, Inner Mongolia, Xinjiang, and Shanxi; reducing diesel 
input in Shaanxi, Xinjiang, Gansu, and Ningxia; decreasing plastic film input in Xinjiang and 
Gansu; and cutting pesticide input in Gansu, Shanxi, and Inner Mongolia. Similarly, improving 
agricultural earnings in Qinghai and Tibet and reducing CO2 emissions in Inner Mongolia, 
Xinjiang, Gansu, and Shaanxi can improve their agricultural GTFP. Of the external climate factors, 
temperature is the main cause of regional differences in GTFP. The optimal annual average 
temperature in Xinjiang, Inner Mongolia, and Tibet is in the range of 7°C–9°C; in Gansu, Shanxi, 
and Ningxia, it is 11°C–13°C; and in Shaanxi, it is 15°C–17°C. CO2 emissions are a major cause 
of temperature changes, and input factors such as machinery, land, plastic film, diesel, pesticide, 
and fertilizer are significant sources of CO2 emissions. Stable climatic conditions and 
improvements in production factors are therefore prerequisites for the development of sustainable 
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agriculture. In the agricultural production process, reducing redundancy of input factors is the best 
way to reduce CO2 emissions and to maintain crop temperatures, thereby improving agricultural 
GTFP. 
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