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Abstract

We study a holographic model with vector condensate by coupling the anti-
de Sitter gravity to an Abelian gauge field and a charged vector field in (3+ 1)
dimensional spacetime. In this model there exists a non-minimal coupling of
the vector field to the gauge field. We find that there is a critical temperature
below which the charged vector condenses via a second order phase transition.
The DC conductivity becomes infinite and the AC conductivity develops a gap
in the condensed phase. We study the effect of a background magnetic field on
the system. It is found that the background magnetic field can induce the con-
densate of the vector field even in the case without chemical potential/charge
density. In the case with non-vanishing charge density, the transition tempera-
ture raises with the applied magnetic field, and the condensate of the charged
vector operator forms a vortex lattice structure in the spatial directions per-
pendicular to the magnetic field.
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1 Introduction

The gauge/gravity duality [1, 2, 3] turns out to be a useful and complimentary framework
to study a strongly coupled system through an appropriate gravity theory living in a
higher dimensional spacetime. There are two complementary approaches. In the top-
down approach, one can obtain some low energy effective theories in the bulk as consistent
truncations of string/M theory by dimensional reduction on some compactified manifolds.
The advantage of this approach is that one knows the origin of the effective gravity theory
in the bulk and the details of the dual field theory. One of the well-known examples in this
category is the duality between the IIB superstring theory on the AdS5×S5 and the N = 4
supersymmetric Yang-Mills theory on the AdS5 boundary. On the other hand, in the so-
called bottom-up approach, the gravity theory in the hulk is usually constructed by some
physical considerations, according to the AdS/CFT dictionary. The models constructed
in this way are simple and universal, just like the Landau-Ginzburg theory describing
superconductivity. The disadvantage is that the details of the dual field theory are not
very clear.

A well known example in the second category is the holographic superconductor model [4,
5]. More specifically, to build a holographic superconductor model, one should first intro-
duce a U(1) gauge field in the bulk, which corresponds to a global U(1) symmetry in the
boundary side. To break this U(1) symmetry spontaneously, one needs a charged operator
condensing at low temperature. Therefore, one includes a charged scalar field in the bulk
which is dual to the boundary scalar operator. For simplicity, the gauge field and the
charged scalar can be minimally coupled. This holographic toy model admits black holes
with scalar hair at low temperatures (superconducting phase), but without scalar hair at
high temperatures (normal phase). In this way, one mimics the superconductor/conductor
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phase transition in the field theory side. Holographic superconductor models constructed
in the top-down approach can also be found, for example, in refs. [6, 7, 8, 9].

It is well known that superconductivity involves the formation of a quantum condensate
state by pairing conduction electrons. The pair of electrons, called the Cooper pair, can
be in a state of either spin singlet with total spin s = 0 or spin triplet with s = 1. The
order parameter in a superconductor is expressed in terms of the gap function. Due to the
anti-commuting properties of the electron wave function, the antisymmetric spin-singlet
state is associated with a symmetric orbital wave function with orbital angular momentum
l = 0 (s-wave), 2 (d-wave), etc, while the symmetric spin-triplet state is accompanied by
an antisymmetric orbital wave function with orbital angular momentum l = 1 (p-wave),
3 (f-wave), etc. Since the condensed field in the holographic setup [4, 5] is a scalar field
dual to a scalar operator in the field theory side, it is therefore a holographic s-wave
model. In the holographic setup, a d-wave order parameter is dual to a charged spin
two field propagating in the bulk [10, 11]. To mimic p-wave superconductor, one can
consider a vector order parameter which is dual to a vector field in the gravity side. A
holographic p-wave model [12] was constructed by adding a SU(2) Yang-Mills field into
the bulk. A U(1) subgroup of the Yang-Mills field is regarded as the gauge group of
electromagnetism. A gauge boson generated by another SU(2) generator charged under
this U(1) by the nonlinear coupling of the non-Abelian field is dual to the vector order
parameter. An alternative holographic realization of p-wave superconductivity emerges
from the condensation of a 2-form field in the bulk [13]. A holographic chiral px + ipy
superconductor was discussed by generalized the SU(2) model introducing a Maxwell field
and a Chern-Simons term [14]. Note that in principle we can also build a holographic
p-wave model by introducing a complex vector field charged under a U(1) gauge field in
the bulk with possible couplings.

On the other hand, motivated by the possibility to create a very strong magnetic
field, for example, at RHIC and LHC, the interest to investigate the properties of QCD
matter in a strong magnetic field has been growing recently. Some new phenomena have
been revealed such as the chiral magnetic effect, a split between the deconfinement phase
transition and chiral symmetry restoration phase trasnition, see ref. [15] for a review. An
interesting new phenomenon is the possibility that the QCD vacuum undergoes a phase
transition to a new phase with charged ρ-meson condensed in a sufficiently strong magnetic
field [16, 17]. This exotic phase is a kind of anisotropic superconducting phase [18]. The
author in ref. [16] adopted an effective quantum electrodynamics action (DSGS model [19])
to discuss the condensate of ρ-meson. A similar study based on Nambu-Jona-Lasinio
model [20] can be found in ref. [17]. The uniform magnetic field background is encoded
in an Abelian gauge field. As a vector boson, the possible condensate of the ρ-meson in
a uniform magnetic field can be realized in the holographic framework by introducing a
charged vector field in the gravity side in the presence of a magnetic field. Based on the
Sakai-Sugimoto model, the holographic ρ-meson was studied in the confinement phase
at zero temperature [21] where it is shown that the effective mass of the ρ-meson at
strong magnetic field becomes tachyonic. The influence of the magnetic field on the chiral
transition temperature and deconfinement transition temperature was discussed in ref. [22].
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In the SU(2) model [12], a similar instability triggered by a non-Abelian magnetic field
has been found in refs. [23, 24, 25], which is reminiscent of the observation that non-
Abelian magnetic field induces the W-boson condensate exhibiting vortex lattices in flat
spacetime [26, 27, 28].

In this paper we will construct a toy model by introducing a complex vector field
charged under an Abelian gauge field in the bulk, which is dual to a strongly coupled
system involving a charged vector operator with a global U(1) symmetry. In this model
there exists a non-minimal coupling between the vector field and the Abelian gauge field.
In this bottom-up approach, we do not know the details of the dual field theory clearly.
However, our setup meets the minimal requirement to construct a holographic p-wave
superconductor model. This model has also potential to discuss the ρ-meson condensate
in the presence of magnetic field.

We first study the model in the case without a background magnetic field, i.e., turn
on the temporal component of the gauge field only, which is the usual way of analyzing
holographic superconductor at a first step [4, 10, 11, 12]. We find a critical temperature
below which a vector operator acquires a vacuum expectation value breaking the Abelian
symmetry spontaneously. Furthermore, the condensate of this vector operator picks out
a special spatial direction, thus the rotational symmetry is also broken in the condensed
phase. The system undergoes a second order phase transition with the critical exponent
one half which coincides with the result from mean field theory. This condensed phase
presents characteristics known from superconductivity, such as an infinite DC conductivity
and a gap in the optical conductivity.

An instability induced by a background non-Abelian magnetic field has been reported,
where the non-Abelian current operators obtain vacuum expectation values resulting in a
vortex lattice structure [24, 25]. We are interested in how the applied Abelian magnetic
field influences the instability of our model with Abelian gauge symmetry. For this, we
turn on a uniform magnetic field B in the bulk, which immerses the condensed phase into
an external magnetic field.

We find that the increase of the magnetic field induces the instability of the black hole
background, which gives rise to a family of condensate induced by the applied magnetic
field in the dual strongly coupled system. This magnetic field induced instability can
happen even for the case with vanishing chemical potential or charge density. For finite
magnetic field, there is a tower of “droplet” solutions [29] in the sense that they are localized
in a finite region. Further, the condensate shrinks in size as one increases the magnetic
field, which shares similarity with the Meissner effect. But it is not the exact case with
conventional superconductivity, where the superconductivity is suppressed by magnetic
field in the real materials. Of course, it is interesting to notice the fact that it has been
reported recently that an applied magnetic field may induce superconductivity [30, 31]. In
addition, the emergence of charged vector operator condensate triggered by the applied
magnetic field is consistent with the appearance of electromagnetically superconducting
phase in a strong magnetic field studied from both field theory method [16, 17] and the
holographic setup [21, 22]. We also manage to construct the vortex lattice solution in
the condensed phase near the phase transition, which is very reminiscent of the Abrikosov
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lattice in common type-II superconductors.
The plan of this paper is as follows. In section 2, we introduce the holographic model

and deduce the general equations of motion of the system. In section 3, we turn on a
uniform magnetic field and give details about how to recover the Landau levels in this
holographic model. Section 4 is devoted to discussing the phase diagram with/without
chemical potential. The vortex lattice solutions are constructed in Section 5. The con-
clusion and further discussions are included in section 6. We study, in Appendix A, the
condensate of the vector field and the phase transition in the case without magnetic field
by calculating the conductivity to ensure the condensed phase to be a superconducting
state.

2 The holographic model

Let us introduce a charged vector field into the (3+1) dimensional Einstein-Maxwell theory
with a negative cosmological constant. The full action reads

S =
1

2κ2

∫

d4x
√−g[R+

6

L2
− 1

4
FµνF

µν − 1

2
ρ†µνρ

µν −m2ρ†µρ
µ + iqγρµρ

†
νF

µν ], (1)

where L is the AdS radius that we will set to be unity, κ2 ≡ 8πG is related to the
gravitational constant in the bulk and m is the mass of the charged vector field ρµ. The
strength of U(1) field Aµ is Fµν = ∇µAν − ∇νAµ. The tensor ρµν in (1) is defined by
ρµν = Dµρν −Dνρµ. The covariant derivative Dµ = ∇µ − iqAµ with q the charge of vector
ρµ. The last interacting term describes the non-minimal coupling of the charged vector
field ρµ to the U(1) gauge field Aµ. The parameter γ characterizes the magnetic moment of
the vector field ρµ and is assumed to be non-negative. The form of the action is reminiscent
of the DSGS model which describes the quantum electrodynamics of the ρ-meson proposed
by Djukanovic, Schindler, Gegelia, and Scherer in ref. [19]. Compared to the action of the
DSGS model, it is easy to find that the action in (1) is just a simple generalization of the
DSGS model to the anti-de Sitter space. Note that the part of neutral ρ-meson in ref. [19]
is neglected here since it is not relevant to our goal in this paper.

Varying the action (1) with respect to Aµ yields the equation of motion for gauge field

∇νFνµ = iq(ρνρ†νµ − ρν†ρνµ) + iqγ∇ν(ρνρ
†
µ − ρ†νρµ), (2)

while a variation of the action (1) with respect to ρν† gives the equation of motion for the
charged vector field

Dνρνµ −m2ρµ + iqγρνFνµ = 0. (3)

If one takes the limit q → ∞ keeping qρµ and qAµ fixed, the back reaction of the matter
sources to the background can be ignored. This is the probe limit we will adopt in this
paper. The background is taken to be a (3+ 1) dimensional Schwarzschild-AdS black hole

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dx2 + dy2), (4)
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with f(r) = r2(1 − r3
h

r3
) and rh the horizon radius. The Hawking temperature for this

black hole is T = f ′(rh)
4π

= 3rh
4π

, which sets the temperature of the boundary field theory.
In the probe limit, the matter fields ρµ and Aµ can be treated as perturbations on the
Schwarzschild-AdS black hole background.

3 Adding a constant magnetic field

In Appendix A, we discussed the condensate of the vector field ρµ induced by the bulk
electric field by turning on the scalar potential At associated with the Maxwell field only.
The normal phase corresponds to the black hole solution with a vanishing vector field ρµ.
As one lowers the temperature, the normal phase becomes unstable to developing non-
trivial configuration of the vector field ρµ. It gives non-zero vacuum expectation value
of the dual vector operator, which breaks the U(1) gauge symmetry and the rotational
symmetry in x − y plane. The calculation of the optical conductivity reveals that there
is a delta function at the origin for the real part of the conductivity, which means the
condensed phase is indeed superconducting. For details, see Appendix A.

We now turn on a magnetic field to study how the applied magnetic field influences on
the system. A consistent ansatz is as follows 1

ρνdx
ν = [ǫρx(r, x)e

ipy +O(ǫ3)]dx+ [ǫρy(r, x)e
ipyeiθ +O(ǫ3)]dy,

Aνdx
ν = [φ(r) +O(ǫ2)]dt + [Bx+O(ǫ2)]dy,

(5)

where ρx(r, x), ρy(r, x) and φ(r) are all real functions, p is a real constant, the constant θ is
the phase of ρy and B > 0 is the constant magnetic field perpendicular to the x− y plane.
We have defined the deviation parameter ǫ from the critical point at which the condensate
begins to appear.

The zeroth order of (2) gives the equation of motion for φ

φ′′(r) +
2

r
φ′(r) = 0. (6)

The asymptotic value of φ gives the chemical potential µ = At(r → ∞) of the dual field
theory. The boundary condition at the horizon is given by requiring that AµA

µ is finite
there. Thus we can obtain a unique solution

φ(r) = µ(1− rh
r
). (7)

The equations of motion for ρx and ρy can be deduced from (3) at order O(ǫ). We
further separate the variables as ρx(r, x) = ϕx(r)X(x) and ρy(r, x) = ϕy(r)Y (x). We find
that to satisfy the equations of motion of the model with the given ansatz, θ can only be

1One can also consider the dyonic black hole background with gauge field fixed [29]. ρµ is considered
as a perturbation in such a background. In that case, the metric field f(r) will depend on electric charge
and magnetic field B.
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chosen as θ+ = π
2
+ 2nπ or θ− = −π

2
+ 2nπ with n an arbitrary integer. The equations of

motion for ϕx(r), ϕy(r), X(x) and Y (x) are divided into the following equations as

ϕxẊ ± (qBx− p)ϕyY = 0, (8)

ϕ′
xẊ ± (qBx− p)ϕ′

yY = 0, (9)

ϕ′′
x+

f ′

f
ϕ′
x+

q2φ2

f 2
ϕx−

m2

f
ϕx+

ϕx

r2f
[∓(qBx−p)

Ẏ

X

ϕy

ϕx
± qBγ

Y

X

ϕy

ϕx
− (qBx−p)2] = 0, (10)

ϕ′′
y +

f ′

f
ϕ′
y +

q2φ2

f 2
ϕy −

m2

f
ϕy +

ϕy

r2f
[
Ÿ

Y
± (qBx− p)

Ẋ

Y

ϕx

ϕy

± (1 + γ)qB
X

Y

ϕx

ϕy

] = 0, (11)

where the prime denotes the derivative with respect to r and the dot denotes the derivative
with respect to x. Here and below the upper signs correspond to the θ+ case and the lower
to the θ− case. In order to satisfy (8), one should impose

ϕy = cϕx, Ẋ ± c(qBx− p)Y = 0, (12)

where c is a real constant. This constraint is automatically satisfied by (9). We can see
that only two of the four functions are independent. Substituting (12) into the remaining
equations, we can find the following three equations

ϕ′′
x +

f ′

f
ϕ′
x +

q2φ2

f 2
ϕx −

m2

f
ϕx −

E

r2f
ϕx = 0, (13)

− Ẍ ∓ c(1 + γ)qBY + (qBx− p)2X = EX, (14)

− Ÿ ∓ (1 + γ)qB

c
X + (qBx− p)2Y = EY. (15)

One can get the value of E for arbitrary constant c by solving the eigenvalue prob-
lem (14) and (15) with the constraint given in (12). There may exist the possibility that
one can not obtain non-trivial solutions for some special values of c. Here we consider a
simple case with c2 = 1, in which the equations of motion for X(x) and Y (x) can be solved
exactly. Since c = 1/c, the c in the denominator in (15) is equivalent to the case in the
numerator. Subtracting (14) from (15) and defining a new function as 2

ψ(x) = X(x)− Y (x), (16)

one gets the equation

ψ̈(x) + [E ∓ c(1 + γ)qB − (qBx− p)2]ψ(x) = 0. (17)

2To solve the above equations, one can also define ψ(x) = X(x) + Y (x). This case is equivalent to
setting c→ −c, which gives nothing new.
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We further introduce a new variable ξ =
√

|qB|(x − p
qB

) and a constant η = E∓c(1+γ)qB
|qB| ,

then the above equation becomes

d2

dξ2
ψ(ξ) + (η − ξ2)ψ(ξ) = 0. (18)

The regular and bounded solution of (18) is given by Hermite function Hn as

ψn(ξ) = Nne
−ξ2/2Hn(ξ), (19)

with the corresponding eigenvalue ηn = 2n+ 1. Nn is a normalization constant and n is a
non-negative integer. Thus we obtain the solution of equation (17) as

ψn(x) = Nne
− 1

2
|qB|(x− p

qB
)2Hn(

√

|qB|(x− p

qB
)), (20)

with the corresponding eigenvalue

En = (2n+ 1)|qB| ± c(1 + γ)qB. (21)

Combining (12), (16) and (20), one can obtain the exact configurations for X(x) and
Y (x), which read

Xn(x; p) = e∓
cqB

2
(x− p

qB
)2 [X(0)e±

cp2

2qB ± cqBNn×
∫ x

0

(t− p

qB
)e−

|qB|∓cqB

2
(t− p

qB
)2Hn(

√

|qB|(t− p

qB
))dt],

(22)

and
Yn(x; p) = Xn(x; p)−Nne

− 1

2
|qB|(x− p

qB
)2Hn(

√

|qB|(x− p

qB
)), (23)

where X(0) is a constant denoting the value of Xn(x; p) at the origin x = 0. The solutions
of ϕx and ϕy corresponding to the eigenvalue En, denoted by ϕxn and ϕyn, can be obtained
by solving the equation of motion (13) with En given in (21). So far, we have recovered the
Landau levels. As one can see in appendix A, we have a second order phase transition from
the normal phase with ρµ = 0 to the condensed phase with ρµ 6= 0. Therefore we should
encounter a marginally stable mode at the transition point. Theses solutions obtained
from (13) just correspond to the marginally stable states.

We can see from (13) that the effective mass of ρx is

m2
eff = m2 +

En

r2
− q2φ2

f
= m2 +

(2n + 1)|qB| ± c(1 + γ)qB

r2
− q2φ2

f
, (24)

which is clearly shifted by the magnetic field B. Depending on concrete parameters and
Landau level, the appearance of magnetic field can increase or decrease the effective mass,
thus will hinder or enhance the transition from the normal phase to the condensed phase.
In what follows, we consider the case with the lowest Landau level with n = 0, which reads

EL
0 = −|γqB|,

XL
0 (x; p) =

N0

2
e−

|qB|
2

(x− p

qB
)2 = −Y L

0 (x; p).
(25)
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4 Phase diagram

We are interested in how the applied magnetic field influences on the transition temperature
from the normal phase to the condensed phase. As we can see from (24), the effective mass
of the charged vector field ρµ in the lowest energy state, i.e., in the lowest Landau level
n = 0 depends on the magnetic field B and the non-minimal coupling parameter γ as

m2
eff = m2 − |γqB|

r2
− q2φ2

f
. (26)

It is clear that the increase of the magnetic field B decreases the effective mass and thus
tends to raise the transition temperature.

4.1 Phase diagram at vanishing charge density

It is well known that the increase of the electric field decreases the effective mass of charged
scalar or vector fields, inducing the transition from the normal phase to the condensed
phase. We first turn off the electric field, which corresponds to the case with vanish-
ing charge density ρ = 0. We introduce a new coordinate z = rh/r. The equation of
motion (13) can be rewritten as 3

ϕ′′
x(z)−

3z2

1− z3
ϕ′
x(z)− [

m2

z2(1− z3)
− 9ζ

16π2(1− z3)
]ϕx(z) = 0, (27)

with ζ = |γqB|/T 2.
To solve such a second order equation by shooting method, we impose the regular

condition at the horizon z = 1 as well as the source free condition at the boundary z = 0.
More specifically, we set ϕx(1) = 1 in our numerical calculation due to the linearity of (27).
For a given m2, only for certain values of ζ = |γqB|/T 2 can the boundary conditions be
satisfied.

Figure 1 presents the three marginally stable curves of ϕx(z) for m
2 = 3/4. The three

lowest-lying modes are in the sequence ζ0 < ζ1 < ζ2. The red line corresponding to the
minimal value of ζ has no intersecting points with horizontal axis at non-vanishing z. Such
a mode with ζ0 ≃ 72.84 is considered as a mode of node n = 0. Furthermore, the green
line to ζ1 ≃ 339.24 and blue line to ζ2 ≃ 780.10 are regarded as modes with nodes n = 1
and n = 2, respectively. Since the radial oscillations in z-direction of ϕx(z) will cost more
energy, the later two curves are therefore thought to be unstable. Thus the lowest value ζ0
just gives the critical magnetic field above which the normal state is unstable to developing
a vector hair. Figure 2 shows the critical magnetic field in terms of ζ0 for various squared
mass of the vector field. It can be seen clearly that ζ0 increases as we increase the squared
mass.

3We apologize to the readers for here using a same notation to denote the derivative with respect
to different variables for brevity. But the meaning of the derivative in the text is clear and will not be
confused.
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Figure 1: The marginally stable curves of the charged vector field corresponding to various
critical ζ = |γqB|/T 2. The three curves from top to down correspond to ζ0 ≃ 72.84 (red),
ζ1 ≃ 339.24 (green) and ζ2 ≃ 780.10 (blue), respectively. We choose m2 = 3/4.

0.0 0.5 1.0 1.5 2.0

20

40

60

80

100

m2

Ζ0

Figure 2: The critical magnetic field ζ0 versus m2 of the vector field. The points are
obtained by the shooting method to solve the equation (27).

It should be pointed out that if we turn off the magnetic field, the normal state will
not become unstable to developing hairs with vanishing charge density. The interesting
result here is that only the magnetic field itself can trigger the phase transition. This
result has an analogy to the QCD vacuum instability induced by a strong magnetic field
to spontaneously developing the ρ-meson condensate. It is clear that the last term in (1)
describing a non-minimal coupling of the vector field ρµ to the gauge field Aµ plays a crucial
role in the instability. Note that similar coupling can be found in many formalisms used
to describe the coupling of magnetic moment to the background magnetic field for charged
particles of spin 1, i.e., vector particles [19, 32].
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4.2 Phase diagram at finite charge density

Let us now consider the system with fixed charge density ρ. Here we do not limit ourselves
to the lowest energy state. The equation of motion (13) can be written in terms of ρ and
z as

ϕ′′
x(z)−

3z2

1− z3
ϕ′
x(z)− [

m2

z2(1− z3)
+

(En/ρ)λ

1− z3
− q2λ2

(1 + z + z2)2
]ϕx(z) = 0, (28)

where λ = ρ
r2
h

and En is given in (21). The lowest energy state corresponds to En = EL
0 =

−|γqB|. For numerical convenience and to match the behavior at the boundary, we further
define

ϕx(z) = (
z

rh
)△−F (z). (29)

Then we can obtain

F ′′(z)− 1

z
(

3z3

1− z3
− 2△−)F

′(z)− [
m2

z2(1− z3)
+

3△−z

1− z3
− △−(△− − 1)

z2
]F (z)

+[
q2λ2

(1 + z + z2)2
− (En/ρ)λ

1− z3
]F (z) = 0.

(30)

normal phase

condensed phase

0 2 4 6 8 10 12 14
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ÈΓqB�ΡÈ

T�Tc

Figure 3: The transition temperature from the normal phase to the condensed phase as a
function of magnetic field. It corresponds to the case with En = −|γqB|. Tc is the critical
temperature in the case without magnetic field. The magnetic field raises the transition
temperature. We choose m2 = 3/4.

This equation depends on two physical parameters T√
ρ
= 3

4π
√
λ
and En

ρ
. To solve such

second order equation, we impose the regular condition at the horizon z = 1 as well as
the source free condition F (0) = 0 at the boundary z = 0. It has a non-trivial solution
only when there is a relation between such two parameters, which just gives the transition
temperature as a function of the magnetic field.
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The (T,B) phase diagram with the lowest Landau level is drawn in figure 3. To deter-
mine which side of the phase transition line is the condensed phase, we can consider the
equation (26). It suggests that the magnetic field decreases the effective mass. So if we in-
crease the magnetic field at a fixed temperature, the normal state will become unstable for
sufficiently large magnetic field. Figure 3 looks very similar to figure 9 in ref. [22] where the
chiral transition temperature rises with magnetic field, indicating chiral magnetic catalysis.
Furthermore, to compare with the lowest Landau level case, we present an example with
positive En = |γqB| in (28) in figure 4. One can see clearly in this case that the transition
temperature lowers with the increase of the applied magnetic field. It is the well known
property of the ordinary superconductor, which has been first discussed in a holographic
setup in ref. [33].

normal phase

condensed phase

0 2 4 6 8 10
0.5
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ÈΓqB�ΡÈ

T�Tc

Figure 4: The transition temperature from the normal phase to the condensed phase versus
magnetic field. It corresponds to the case with En = |γqB|. Tc is the critical temperature
in the case without magnetic field. The magnetic field leads to lowering the transition
temperature. We choose m2 = 3/4.

5 Vortex lattice solution

Let us now construct the vortex lattice solution. It is enough to consider the n = 0 solution
only, i.e.,

ψ0(x; p) = N0e
− 1

2
|qB|(x− p

qB
)2 . (31)

Due to the fact that the eigenvalue En is independent of p, a linear superposition of the
solutions eipyϕxn(r)Xn(x; p) and e

ipyϕyn(r)Yn(x; p) with different p is also a solution of the
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model at O(ǫ). We introduce two functions

ρx(r, x, y) = ϕx0(r)
+∞
∑

ℓ=−∞
cℓe

ipℓyXL
0 (x; pℓ),

ρy(r, x, y) = ceiθ±ϕx0(r)

+∞
∑

ℓ=−∞
cℓe

ipℓyY L
0 (x; pℓ),

cℓ = e
−i

πa2

a2
1

ℓ2

, pℓ =
2π

√

|qB|ℓ
a1

,

(32)

which satisfy the full equations of motion. a1 and a2 are arbitrary constants. Following
ref. [33], we can obtain the vortex lattice solution

△ρ(r, x, y) ≡ ρx(r, x, y)− ce−iθ±ρy(r, x, y) = ϕx0(r)
+∞
∑

ℓ=−∞
cℓe

ipℓyψ0(x; pℓ). (33)

△ρ(r, x, y) has a pseudo-periodicity

△ρ(r, x, y) = △ρ(r, x, y + a1
√

|qB|
),

△ρ(r, x+ 2π

a1
√

|qB|
, y +

a2

a1
√

|qB|
) = e

i2π
a1

(
√

|qB|y+ a2
2a1

)△ρ(r, x, y),
(34)

as well as a zero at

xm,n = (m+
1

2
)b1 + (n +

1

2
)b2, (35)

with two vectors b1 =
a1√
|qB|

∂y and b2 =
2π

a1
√

|qB|
∂x +

a2

a1
√

|qB|
∂y. m and n are two integers.

Since the expectation value of the operator Ĵµ dual to ρµ is given by the coefficient

at boundary r → ∞, the quantity J± = 〈Ĵx ± iĴy〉 indeed exhibits the vortex structure
with the cores of vortices located at xm,n. In particular, the triangular lattice with three
adjoining vortices forming an equilateral triangle can be obtained by choosing the following
parameters

a1 =
2
√
π

4
√
3
, a2 =

2π√
3
. (36)

It should be stressed that it is the special combinations J± which exhibit the vortex lattice
structure. In particular, for q > 0, it is J− that corresponds to the lowest Landau level,
while for q < 0, it is J+. The form of operator presenting vortex lattice structure is the
same as the one in field theory study without gravity [16]. This also provides the evidence
for the correctness of choosing c2 = 1 in section 3.

Figure 5 shows the configuration of the norm of condensate J− in the x − y plane for
the triangular lattice. Obviously, to obtain the true ground state, we should calculate the
free energy of the solutions with different lattice structures from the action to find which
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configuration minimizes the free energy. It turns out that the linear analysis presented
here is not sufficient to determine the most stable solution. We should include higher order
contributions just as done in refs. [24, 33]. The calculation is much more complicated and
is not very relevant to our purpose of this paper. We leave it for our further study.

Figure 5: The vortex lattice structure for the triangular lattice in x−y plane. The contour
plot is also drawn in the bottom. In particular, the condensate vanishes in the core of each
vortex.

6 Conclusion and discussion

In this paper we studied a holographic model with a complex vector field charged under
a U(1) gauge field in a (3 + 1) dimensional AdS black hole background, aiming to shed
some light on the real strongly coupled systems which are of gravity duals. In this model,
there is a non-minimal coupling of the vector field to the U(1) gauge field, which describes
the interaction between the magnetic dipole moment of the vector field to the background
magnetic field. This model includes the minimal ingredients to build a holographic p-wave
superconductor model. We found a critical temperature at which the system undergoes a
second order phase transition. The critical exponent of this transition is one half which
coincides with the case in the Landau-Ginzburg theory. In the condensed phase, a vector
operator acquires a vacuum expectation value breaking the Abelian symmetry as well as
rotational symmetry spontaneously. Our calculation showed that this condensed phase
exhibits an infinite DC conductivity and a gap in the frequency-dependent conductivity,
which is quite similar to properties of the ordinary superconductivity.

14



We paid more attention on the response of this system to an applied magnetic field. We
obtained the Landau level, from which we can find the contribution to the effective mass of
the vector field by the magnetic field (see (24)). Due to the non-minimal coupling given in
the last term of (1), the applied magnetic field can reduce the effective mass of the vector
field, thus inducing the instability of the black hole background even when the chemical
potential/charged density is absent. That is, for the case with vanishing chemical potential
or charged density, the black hole background becomes no longer stable when the magnetic
field is beyond a certain critical value. For the case with non-vanishing chemical potential,
the phase boundary is determined by a relation between the transition temperature and
the magnetic field, which is presented in figure 3. The transition temperature increases
with the applied magnetic field. The response of this system to the magnetic field is quite
different from the behavior of ordinary superconductor where the magnetic field makes the
transition more difficult as drawn in figure 4. But our result is quite similar to the case of
QCD vacuum instability induced by strong magnetic field to spontaneously developing the
ρ-meson condensate [16, 17]. Although so, it was shown that in our model, the condensate
of the vector operator forms a vortex lattice structure in the spatial directions perpendicular
to the magnetic field. Of course, the non-minimal coupling term in the action plays a crucial
role in both cases. Therefore in some sense, our model is a holographic setup of the study
of ρ-meson condensate in refs.[16, 17].

In ordinary superconductors an external magnetic field suppresses superconductivity
via diamagnetic and Pauli pair breaking effects. However, it has also been proposed that
the magnetic field induced superconductivity can also be realized in type-II supercon-
ductors [34, 35], in which the Abrikosov flux lattice may enter a quantum limit of the low
Landau level dominance with a spin-triplet pairing. And possible experimental evidence for
the strong magnetic induced superconductivity can be found, for example, in refs. [30, 31].
It was also shown in Gross-Neveu type model that applied magnetic field might induce
superconductivity in the planar system with 4-fermion interaction [36].

We mention here that similar studies can also be generalized other gravitational back-
grounds, such as the AdS soliton background which has been adopted to mimic supercon-
ductor/insulator phase transition [37]. The study of magnetic field effect in the supercon-
ductor/insulator case can be found in ref. [38]. In a forthcoming paper [39], we generalize
the present study to the case with the AdS soliton as the background. It is found that the
magnetic field can induce the instabilities of the AdS soliton background. Comparing our
model with the SU(2) model with a constant non-Abelian magnetic field [23, 25], we find
that our complex vector field model in some sense is a generalization of the SU(2) model
to the case with a general mass squared m2 and magnetic moment characterized by γ. In
the setup of the present paper, the SU(2) model corresponds to our model with m2 = 0
and γ = 1.

In this paper, we restricted ourselves to the probe approximation, neglecting the effect
of matter fields on the background geometry. This can indeed reveal some significant prop-
erties of the model, but something might be lost in this approximation, see ref. [40] as an
example. It is therefore helpful to understand full properties of the model by considering
the back reaction of matter fields on the background geometry. In a recent paper [41], going
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beyond the probe approximation, we found a rich phase structure in this model without
magnetic field. Depending on mass square m2 and charge q of the vector field, not only
second order but also first order and zeroth order phase transition can appear. Interest-
ingly, there also exists a so-called “retrograde condensation” in which the hairy solution
exists only for temperatures above a critical value and is thermodynamically subdominant.
Particularly, the zeroth order transition and retrograde condensation can be observed for
the case with small m2. Indeed this model has much more phase behaviors than the SU(2)
model, thus it can be used to mimic much richer phenomena in dual strongly coupled
systems.

In our model, it is the magnetic field itself that can induce the condensate. A natural
question arises how about the Meissner effect known as that superconductors expel weak
external magnetic field. This effect is due to the large superconducting currents induced
in the superconductor by the external magnetic field, which generates a back-reacting
magnetic field screening the external magnetic field. In the holographic SU(2) p-wave
model, it has been pointed out [25] that the vortex currents flow in the opposite direction
to the one in conventional superconductors, thus can enhance the applied magnetic field in
the regions between the vortices. It seems that the model presented here is similar to the
SU(2) p-wave model. It is interesting to ask whether a similar phenomenon also appears in
our model. To answer this question, we need to consider the contribution of higher order
terms in (5), which is also required to find the true vortex flux lattice. We leave it for
further study.

In this paper we only calculated the conductivity in the case without magnetic field in
one spatial direction. Although it is enough to see the superconductivity feature of the
condensed phase, in order to study the model in a more realistic manner, it is desirable to
calculate the conductivity in another direction and further to study the transport properties
of the lattice state. As a phenomenological approach, this toy model would have potential
application to mimic strongly coupled systems with a vector like order parameter. It should
be applicable in a wide variety of condensed matter systems, heavy ion physics and beyond.
We hope to report further progresses in future.
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A Condensate of vector field and superconducting phase

transition

As a toy model with a charged vector field in the bulk dual to a vector operator in the field
theory, there exists the possibility that the condensate of this vector field can serve as an
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order parameter to mimic a holographic p-wave superconductor phase transition, like the
s-wave case [4, 5]. More precisely, we hope that this system has stable black hole solutions
with vector hair at low temperatures, but without vector hair at high temperatures. If
this is true, in the condensed phase, the condensate of the dual vector operator will break
not only the U(1) symmetry but also the rotational symmetry since the condensate of
vector field picks out one special direction. This situation is very similar to the one in the
holographic p-wave superconductor model with SU(2) gauge field in ref. [12]. In this sense,
our model can also be regarded as a holographic p-wave model.

A.1 Condensate of vector field

We adopt the following ansatz

ρνdx
ν = ρx(r)dx+ ρy(r)dy, Aνdx

ν = φ(r)dt. (37)

One can use the U(1) gauge symmetry to set ρx to be real. Then one finds that the r
component of (2) implies that the phase of ρy must be constant. Without loss of generality,
we take ρy to be real. Then, the independent equations of motion in terms of the above
ansatz are deduced as follows

ρ′′x +
f ′

f
ρ′x +

q2φ2ρx
f 2

− m2ρx
f

= 0,

ρ′′y +
f ′

f
ρ′y +

q2φ2ρy
f 2

− m2ρy
f

= 0,

φ′′ +
2

r
φ′ − 2q2

r2f
(ρ2x + ρ2y)φ = 0,

(38)

where the prime denotes the derivative with respect to r.
In order to find the solutions for all the three functions F = {ρx, ρy, φ} one must impose

suitable boundary conditions at the AdS boundary r → ∞ and at the horizon r = rh. In
addition to f(rh) = 0, one must require φ(rh) = 0 in order for gµνAµAν to be finite at the
horizon.

In order to match the asymptotical AdS boundary, the general falloff of the matter
fields near the boundary r → ∞ should behave as

φ = µ− ρ

r
+ . . . , ρx =

ρx−
r∆−

+
ρx+
r∆+

+ . . . , ρy =
ρy−
r∆−

+
ρy+
r∆+

+ . . . , (39)

where ∆± = 1±
√
1+4m2

2
. 4 We impose ρx− = 0 and ρy− = 0, since we want the U(1)

symmetry to be broken spontaneously. According to the AdS/CFT dictionary, up to a
normalization, the coefficients µ, ρ, ρx+ and ρy+ are interpreted as chemical potential,
charge density and the x and y components of the vacuum expectation value of the vector
operator Ĵµ in the dual field theory, respectively.

4The m2 has a lower bound as m2 = −1/4 with ∆+ = ∆− = 1/2, in which case there is a logarithmic
term in the asymptotical expansion. Such a term should be considered as the source set to be vanishing [42].
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There is a useful scaling symmetry in the equations of motion

r → λr, (t, x, y) → λ−1(t, x, y), (φ, ρx, ρy) → λ(φ, ρx, ρy), (40)

where λ is an arbitrary positive constant. Under this symmetry, the revelent quantities
transform as

T → λT, µ → λµ, ρ→ λ2ρ, (ρx+, ρy+) → λ∆++1(ρx+, ρy+). (41)
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Figure 6: The condensate as a function of temperature. We choose q = 1 and m2 = 3/4.
The condensate begins to appear at Tc ≃ 0.102

√
ρ.

We assume the condensate to pick out the x direction as special, so we can consistently
set ρy = 0. The condensate as a function of temperature is presented in figure 6. It is clear
that as we lower the temperature, the normal phase with vanishing charged vector becomes
unstable to developing vector hair which breaks the U(1) symmetry as well as rotational
symmetry in the dual field theory. Fitting the curve near the critical temperature Tc, we
find that for small condensate there is a critical behavior with critical exponent 1/2, which
precisely meets the result given by mean field theory and it is typically a second order
phase transition. In the case with m2 = 3/4 we obtain

〈Ĵx〉 ≃ 339T 5/2
c (1− T/Tc)

1/2, as T → Tc. (42)

Thus we have obtained two black hole solutions in the system. When T > Tc, we
have the black hole solution without the vector field, while we have the black hole solution
with non-trivial vector field as T < Tc. This behavior is in complete agreement with
the holographic superconducting phase transition in the literature. Therefore we expect
that the black hole solution with non-trivial vector field can describe a superconducting
phase. To prove this, it is helpful to calculate the optical conductivity. Before dong this,
we should first ensure that the black hole solution with non-trivial vector field is more
thermodynamically stable than the one without the vector field as T < Tc.
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A.2 Free energy

In order to determine which solution is thermodynamically favored, we should calculate the
free energy of the system for both black hole solutions. We will work in canonical ensemble
in this paper, where the charge density is fixed. In gauge/gravity duality Helmholtz free
energy F of the boundary thermal state is identified with temperature times the on-shell
bulk action with Euclidean signature. Since we work in the probe approximation, we can
ignore the gravity part. Given that the system is stationary, the Euclidean action is related
to the Minkowski case by a total minus. Employing the equations of motion (2) and (3),
we have

−2κ2SEuclidean =

∫

d4x
√−g(−1

4
FµνF

µν − 1

2
ρ†µνρ

µν −m2ρ†µρ
µ + iqγρµρ

†
νF

µν)

+

∫

d3x
√
−hnµAνF

µν + Sct

=

∫

d4x
√−g1

2
Aν∇µF

µν +

∫

d3x
√
−hnµ(

1

2
AνF

µν − ρ†νρ
µν) + Sct,

(43)

where h is the determinant of the induced metric hµν on the boundary r → ∞ and nµ is
the outward pointing unit normal vector to the boundary. Sct denotes the surface counter
term for removing divergence.

Substituting the asymptotically expansion (39) into (43) and introducing a counter
term Sct = −∆−

∫

dx3
√
−hhµνρµ†ρν , 5 we find the free energy F as

2κ2F

V
=

1

2
µρ− (2∆+ − 1)(ρx−ρx+ + ρy−ρy+)−

∫ ∞

rh

dr
√−g1

2
Aν∇µF

µν , (44)

with V =
∫

dxdy. Regarding ρx− and ρy− as sources, Helmholtz free energy tells us that
sub-leading terms ρx+ and ρy+ are the expectation values of the dual operator in the field
theory side. The difference of Helmholtz free energy between the condensed phase and
the normal phase as a function of temperature is presented in figure 7. It is clear that
below the critical temperature Tc, the state with non-vanishing vector “hair” is indeed
thermodynamically favored, compared to the normal phase. The phase transition is second
order, which can be seen, for example, from the derivative of the free energy with respect
to the temperature.

A.3 Conductivity

We now calculate the conductivity in the dual field theory side as a function of frequency
ω. We need to turn on fluctuations of the matter contents in the bulk. We assume
perturbations have a time dependence of the form e−iωt with zero spatial momentum. It

5We are not sure whether the counter term works or not in a general case. But we find this counter
term works well for the ansatz (37) with the asymptotically expansion (39).
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the critical temperature Tc ≃ 0.102
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turns out that one can consistently turn on the perturbations of Ay only. We can obtain
the equation of motion for Ay by linearizing the equations of motion (2), which reads

A′′
y +

f ′

f
A′

y + (
ω2

f 2
− 2q2ρ2x

r2f
)Ay = 0. (45)

Since the conductivity is related to the retarded two-point function of the U(1) current,
we impose the ingoing boundary condition near the horizon. The gauge field Ay near the
boundary r → ∞ falls off as

Ay = A(0) +
A(1)

r
+ · · · . (46)

According to the AdS/CFT dictionary, one can obtain the conductivity as

σyy(ω) =
A(1)

iωA(0)
. (47)

The AC conductivity as a function of frequency is presented in figure 8. We can see
clearly that the optical conductivity along the y direction in this model behaves qual-
itatively similar to the case in the p-wave model with SU(2) gauge symmetry [12]. In
particular, from the Kramers-Kronig relation, one can conclude that the real part of the
conductivity has a Dirac delta function at ω = 0 since the imaginary part has a pole, i.e.,
Im[σyy(ω)] ∼ 1

ω
. Furthermore, it is clear that the optical conductivity develops a gap at

some special frequency ωg known as gap frequency. As suggested in ref. [42], it can be iden-
tified with the one at the minimum of the imaginary part of the AC conductivity. Re[σyy] is
very small in the infrared and rises quickly at ωg. There also exists a small “bump” slightly
above ωg which is reminiscent of the behavior due to fermionic pairing [12]. For our chosen
parameter, we have ωg ≃ 8Tc. Compared to the corresponding BCS value ωg ≃ 3.5Tc, the
result shown here is consistent with the fact that our holographic model describes a system
at strong coupling.
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Figure 8: The optical conductivity as a function of frequence. The solid lines in the left
plot are the real part of the conductivity, while the dashed lines in the right plot are
the imaginary part of the conductivity. We choose q = 1 and m2 = 3/4. The horizontal
lines correspond to the temperature above Tc. Other curves from left to right correspond to
T/Tc ≃ 0.830 (purple), T/Tc ≃ 0.519 (green), T/Tc ≃ 0.388 (blue), and T/Tc ≃ 0.290 (red),
respectively. There is a delta function at the origin for the real part of the conductivity in
the condensed phase.
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