Current Location:home > Browse


1. chinaXiv:202011.00131 [pdf]

Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?

FENG,Jian; ZHAO,Lingdi; ZHANG,Yibo; SUN,Lingxiao; YU,Xiang; YU,Yang
Subjects: Geosciences >> Geography

There are eight provinces and autonomous regions (Gansu Province, Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous Region, Tibet Autonomous Region, Qinghai Province, Shanxi Province, and Shaanxi Province) in Northwest China, most areas of which are located in arid and semi-arid regions (northwest of the 400 mm precipitation line), accounting for 58.74% of the country's land area and sustaining approximately 7.84×106 people. Because of drought conditions and fragile ecology, these regions cannot develop agriculture at the expense of the environment. Given the challenges of global warming, the green total factor productivity (GTFP), taking CO2 emissions as an undesirable output, is an effective index for measuring the sustainability of agricultural development. Agricultural GTFP can be influenced by both internal production factors (labor force, machinery, land, agricultural plastic film, diesel, pesticide, and fertilizer) and external climate factors (temperature, precipitation, and sunshine duration). In this study, we used the Super-slacks-based measure (Super-SBM) model to measure agricultural GTFP during the period 2000–2016 at the regional level. Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period (2000–2016), and the fluctuation was caused by the production factors (input and output factors). To improve agricultural GTFP, Shaanxi, Shanxi, and Gansu should reduce agricultural labor force input; Shaanxi, Inner Mongolia, Gansu, and Shanxi should decrease machinery input; Shaanxi, Inner Mongolia, Xinjiang, and Shanxi should reduce fertilizer input; Shaanxi, Xinjiang, Gansu, and Ningxia should reduce diesel input; Xinjiang and Gansu should decrease plastic film input; and Gansu, Shanxi, and Inner Mongolia should cut pesticide input. Desirable output agricultural earnings should be increased in Qinghai and Tibet, and undesirable output (CO2 emissions) should be reduced in Inner Mongolia, Xinjiang, Gansu, and Shaanxi. Agricultural GTFP is influenced not only by internal production factors but also by external climate factors. To determine the influence of climate factors on GTFP in these provinces and autonomous regions, we used a Geographical Detector (Geodetector) model to analyze the influence of climate factors (temperature, precipitation, and sunshine duration) and identify the relationships between different climate factors and GTFP. We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions. For Xinjiang, Inner Mongolia, and Tibet, a suitable average annual temperature would be in the range of 7°C–9°C; for Gansu, Shanxi, and Ningxia, it would be 11°C–13°C; and for Shaanxi, it would be 15°C–17°C. Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture. Hence, in the agricultural production process, reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures, thereby improving the agricultural GTFP. The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions, identifying an effective way forward for the arid and semi-arid regions of Northwest China.

submitted time 2020-11-25 From cooperative journals:《Journal of Arid Land》 Hits179Downloads99 Comment 0

2. chinaXiv:202011.00132 [pdf]

Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress

PEI,Yanwu; HUANG,Laiming; SHAO,Ming'an; ZHANG,Yinglong
Subjects: Geosciences >> Geography

Amygdalus pedunculata Pall. is a major species that is widely planted in afforested soils with different textures in the transitional zone between Mu Us Desert and Loess Plateau, China. However, the responses of A. pedunculata to increasing intensity of water stress in different textural soils are not clear. Here, we conducted a soil column experiment to evaluate the effects of different textures (sandy and loamy) on water consumption, water use efficiency (WUE), biomass accumulation and ecological adaptability of A. pedunculata under increasing water stress, i.e., 90% (±5%) FC (field capacity), 75% (±5%) FC, 60% (±5%) FC, 45% (±5%) FC and 30% (±5%) FC in 2018. A. pedunculata grown in the sandy soil with the lowest (30% FC) and highest (90% FC) water contents had respectively 21.3%–37.0% and 4.4%–20.4% less transpiration than those with other water treatments (45%–75% FC). In contrast, A. pedunculata transpiration in the loamy soil decreased with decreasing water content. The magnitude of decrease in transpiration increased with increasing level of water deficit (45% and 30% FC). Mean daily and cumulative transpirations of the plant were significantly lower in the sandy soil than in the loamy soil under good water condition (90% FC), but the reverse was noted under water deficit treatments (45% and 30% FC). Plant height, stem diameter and total biomass initially increased with decreasing water content from 90% to 75% FC and then declined under severe water deficit conditions (45% and 30% FC) in the sandy soil. However, these plant parameters decreased with decreasing water content in the loamy soil. WUE in the sandy soil was 7.8%–12.3% higher than that in the loamy soil, which initially increased with decreasing water content from 90% to 75% FC and then declined under water deficit conditions (45% and 30% FC). The study showed that plant transpiration, biomass production and WUE responded differentially to increasing intensity of water stress in the sandy and loamy soils. The contrasting responses of A. pedunculata to water stress in different textural soils can guide future revegetation programs in the northern region of Chinese Loess Plateau by considering plant adaptability to varying soil and water conditions.

submitted time 2020-11-25 From cooperative journals:《Journal of Arid Land》 Hits162Downloads86 Comment 0

3. chinaXiv:202011.00133 [pdf]

Impacts of snow on seed germination are independent of seed traits and plant ecological characteristics in a temperate desert of Central Asia

ANNIWAER,Anlifeire ANNIWAER; SU,Yangui; ZHOU,Xiaobing; ZHANG,Yuanming
Subjects: Geosciences >> Geography

Seed germination profoundly impacts plant community composition within the plant life cycle. Snow is an important source of water for seed germination in the temperate deserts of Central Asia. Understanding how seed germination responds to variations in snow cover in relation to seed traits and plant ecological characteristics can help predict plant community sustainability and stability in Central Asia under a scenario climate change. This study investigated the seed germination of 35 plant species common to the Gurbantunggut Desert in Central Asia under the three snow treatments: (1) snow addition; (2) ambient snow; and (3) snow removal. Two-way analysis of variance (ANOVA) tests were performed to assess interactions among the impacts of snow treatments, seed traits and plant ecological characteristics on seed germination. Phylogenetic generalized least-squares (PGLS) model was used to test the relationships between seed traits and seed germination. The results demonstrated that snow variations had no significant impacts on seed germination overall. Seed germination under the snow addition treatment was similar with that under the ambient snow treatment, irrespective of seed traits and plant ecological characteristics. Snow removal only had negative impacts on seed germination for certain groups of seed traits and plant ecological characteristics. Seed mass positively affected seed germination, showing a linear increase of arcsin square root-transformed seed germination with log-transformed seed mass. Seed shape also profoundly impacted seed germination, with a higher germination percentage for elongated and flat seeds. Seed germination differed under different plant life forms, with semi-shrub species showing a significantly higher germination percentage. Most importantly, although snow treatments, seed traits and plant ecological characteristics had no interactive effects on seed germination overall, some negative impacts from the snow removal treatment were detected when seeds were categorized on the basis of seed mass and shape. This result suggests that variations of snow cover may change plant community composition in this temperate desert due to their impacts on seed germination.

submitted time 2020-11-25 From cooperative journals:《Journal of Arid Land》 Hits186Downloads97 Comment 0

4. chinaXiv:202010.00036 [pdf]

Spatial-temporal characteristics and influencing factors of relative humidity in arid region of Northwest China during 1966–2017

CHEN,Ditao; LIU,Wenjiang; HUANG,Farong; LI,Qian; UCHENNA-OCHEGE,Friday ; LI,Lanhai
Subjects: Geosciences >> History of Geosciences

Playing an important role in global warming and plant growth, relative humidity (RH) has profound impacts on production and living, and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area. However, information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited. This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method, and the path analysis was used to clarify the impact of temperature (T), precipitation (P), actual evapotranspiration (ETa), wind speed (W) and sunshine duration (S) on RH. The results demonstrated that climatic conditions in North Xinjiang (NXJ) was more humid than those in Hexi Corridor (HXC) and South Xinjiang (SXJ). RH had a less significant downtrend in NXJ than that in HXC, but an increasingly rising trend was observed in SXJ during the last five decades, implying that HXC and NXJ were under the process of droughts, while SXJ was getting wetter. There was a turning point for the trend of RH in Xinjiang, which occurred in 2000. Path analysis indicated that RH was negatively correlated to T, ETa, W and S, but it increased with increase of P. S, T and W had the greatest direct effects on RH in HXC, NXJ and SXJ, respectively. ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ, while T was the dominant factor in SXJ.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits155Downloads86 Comment 0

5. chinaXiv:202010.00037 [pdf]

Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China

LI,Xuemei; SIMONOVIC,Slobodan P; LI,Lanhai; ZHANG,Xueting; QIN,Qirui
Subjects: Geosciences >> History of Geosciences

Short-term climate reconstruction, i.e., the reproduction of short-term (several decades) historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area, can extend the length of climatic time series and offset the shortage of observations. This can be used to assess regional climate change over a much longer time scale. Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5 (CMIP5) dataset for the period of 1850–2000, the Climatic Research Unit (CRU) dataset for the period of 1901–2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region (TMR) of China during the period of 1961–2011, we calibrated and validated monthly average temperature (MAT) and monthly accumulated precipitation (MAP) in the TMR using the delta, physical scaling (SP) and arti?cial neural network (ANN) methods. Performance and uncertainty during the calibration (1971–1999) and verification (1961–1970) periods were assessed and compared using traditional performance indices and a revised set pair analysis (RSPA) method. The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables, different data sources, and/or different methods used. According to traditional performance indices, both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961–1999. However, the results differed from those obtained by the RSPA method. This showed that the CRU dataset produced a low degree of uncertainty (positive connection degree) during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset. Overall, the calibrated and verified MAP had a high degree of uncertainty (negative connection degree) regardless of the dataset or reconstruction method used. Therefore, the reconstructed time series of MAT for the period of 1850 (or 1901)–1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study. The results of this study will be useful for short-term (several decades) regional climate reconstruction and longer-term (100 a or more) assessments of regional climate change.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits132Downloads73 Comment 0

6. chinaXiv:202006.00222 [pdf]

Global Dryland Ecosystem Programme (G-DEP): Africa consultative meeting report

PENG Yu; FU Bojie; ZHANG Linxiu; YU Xiubo; FU Chao; Salif DIOP; Hubert HIRWA; Aliou GUISSE; LI Fadong
Subjects: Geosciences >> History of Geosciences

In order to enhance and restore the ecosystems of natural capital in African arid regions, the Global Dryland Ecosystem Programme (G-DEP) consultative meeting was hosted in Dakar, Senegal, from 23 to 25 September 2019. This paper details the first African meeting of the G-DEP. Consultative meeting reviewed preceding dryland ecosystems case studies, identified vulnerable arid and semi-arid regions, and proposed sustainable solutions to problems. It also identified the successes and failures of previous attempts to improve vulnerable ecosystems and ultimately formed an action plan to improve these attempts. Climate, ecosystems, and livelihoods for Sustainable Development Goals (SDGs), Great Green Wall Initiative (GGWI) for Sahara and Sahel, and China-Africa cooperation on science, technology, and innovation are three extra main sections concerned of the meeting. Separately, more specific topics as the complicated relationship between these natural processes and human activity, including pastoralism, soil restoration, and vegetation regenerate techniques, were fully discussed. Consultative meeting also identified the positive effects international collaboration can have on dryland regions, specifically in the capacity of sharing information, technology, and innovation on purpose to develop a joint proposal for long-term research programs in African arid and semi-arid areas. Moreover, meetings that review the progress made on ecosystem management for the sustainable livelihoods in Africa, identification of priority areas, and the development and implementation of ecosystem programs for proper research and collaboration in African arid and semi-arid zones, have been proposed as strategic recommendations to enhance the global partnership for sustainable development. Furthermore, as the outcomes of the workshop, there are three steps proposed to handle African dryland climate changes, several aspects suggested to solve current dilemmas of the GGWI, and a series of actions recommended for G-DEP related activities in Africa.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits11909Downloads617 Comment 0

7. chinaXiv:202006.00234 [pdf]

Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A mini review

MA Jihong; TIAN Changyan; LYU Guanghui; MAI Wenxuan
Subjects: Geosciences >> History of Geosciences

Since 1996, transgenic Bacillus thuringiensis (Bt) cotton has been commercially grown in numerous countries in an effort to stem the losses caused by key lepidopteran pests. However, the development of pest resistance to Bt toxins has jeopardized the continued utilization of Bt cotton. As a strategy designed to circumvent the development of resistance, Bt cotton varieties expressing two or more toxins targeting the same pest have been introduced. Nevertheless, from the perspective of long-term planting of Bt cotton, the potential risk of cross-resistance to these Bt toxins is a threat that cannot be ignored. In this paper, we review current research (including that based on the analysis of protein binding sites and resistance genes) on the resistance of cotton bollworm (Helicoverpa armigera) to the Bt toxins Cry1Ac and Cry2Ab and the interrelationship between these toxins. On the basis of existing evidence, we assume that the actions of Cry1Ac and Cry2Ab against cotton bollworm are not completely independent, and then propose the ''resistance-associated gene mutation potential hypothesis''. Although the mechanisms underlying the resistance of pests to Bt toxins are yet to be comprehensively elucidated, this hypothesis could undoubtedly have important implications for adopting ''pyramid'' strategy in the future. Further research is recommended to devise strategies to retard the development of H. armigera resistance to Bt cotton, either using different Bt toxins or their various combinations.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits8456Downloads491 Comment 0

8. chinaXiv:202006.00235 [pdf]

Origin and circulation of saline springs in the Kuqa Basin of the Tarim Basin, Northwest China

SHAN Junjie; WANG Jianping; SHAN Fashou; TENG Xueming; FAN Qishun; LI Qingkuan; QIN Zhanjie; ZHANG Xiangru
Subjects: Geosciences >> History of Geosciences

It is widely accepted that hydrogeochemistry of saline springs is extremely important to understand the water circulation and evolution of saline basins and to evaluate the potential of potassium-rich evaporites. The Kuqa Basin, located in the northern part of the Tarim Basin in Northwest China, is a saline basin regarded as the most potential potash-seeking area. However, the origin and water circulation processes of saline springs have yet to be fully characterized in this saline basin. In this study, a total of 30 saline spring samples and 11 river water samples were collected from the Qiulitage Structural Belt (QSB) of the Kuqa Basin. They were analyzed for major (K+, Ca2+, Na+, Mg2+, SO42?, Cl? and HCO3?) and trace (Sr2+ and Br?) ion concentrations, stable H-O-Sr isotopes and tritium concentrations in combination with previously published hydrogeochemical and isotopic (H-O) data in the same area. It is found that the water chemical type of saline springs in the study area belonged to the Na-Cl type, and that of river water belonged to the Ca-Mg-HCO3-SO4 type. The total dissolved solid (TDS) of saline springs in the QSB ranged from 117.77 to 314.92 g/L, reaching the brine level. On the basis of the general chemical compositions and the characteristics of the stable H-O-Sr isotopes of saline springs, we infer that those saline springs mainly originated from precipitation following river water recharging. In addition, we found that saline springs were not formed by evapo-concentration because it is unlikely that the high chloride concentration of saline springs resulted in evapo-concentration and high salinity. Therefore, we conclude that saline spring water may have experienced intense evapo-concentration before dissolving the salty minerals or after returning to the surface. The results show that the origin of salinity was mainly dominated by dissolving salty minerals due to the river water and/or precipitation that passed through the halite-rich stratum. Moreover, there are two possible origins of saline springs in the QSB: one is the infiltration of the meteoric water (river water), which then circulates deep into the earth, wherein it dissolves salty minerals, travels along the fault and returns to the surface; another is the mixture of formation water, or the mixture of seawater or marine evaporate sources and its subsequent discharge to the surface under fault conditions. Our findings provide new insight into the possible saltwater circulation and evolution of saline basins in the Tarim Basin.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits9727Downloads483 Comment 0

9. chinaXiv:202006.00238 [pdf]

Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes

QIAO Xianguo; GUO Ke; LI Guoqing; ZHAO Liqing; LI Frank Yonghong; GAO Chenguang
Subjects: Geosciences >> History of Geosciences

The criteria used by International Union for Conservation of Nature (IUCN) for its Red List of Ecosystems (RLE) are the global standards for ecosystem-level risk assessment, and they have been increasingly used for biodiversity conservation. The changed distribution area of an ecosystem is one of the key criteria in such assessments. The Stipa bungeana grassland is one of the most widely distributed grasslands in the warm-temperate semi-arid regions of China. However, the total distribution area of this grassland was noted to have shrunk and become fragmented because of its conversion to cropland and grazing-induced degradation. Following the IUCN-RLE standards, here we analyzed changes in the geographical distribution of this degraded grassland, to evaluate its degradation and risk of collapse. Past (1950–1980) distribution areas were extracted from the Vegetation Map of China (1:1,000,000). Present realizable distribution areas were equated to these past areas minus any habitat area losses. We then predicted the grassland's present and future (under the Representative Concentration Pathway 8.5 scenario) potential distribution areas using maximum entropy algorithm (MaxEnt), based on field survey data and nine environmental layers. Our results showed that the S. bungeana grassland was mainly distributed in the Loess Plateau, Hexi Corridor, and low altitudes of the Qilian Mountains and Longshou Mountain. This ecosystem occurred mainly on loess soils, kastanozems, steppe aeolian soils and sierozems. Thermal and edaphic factors were the most important factors limiting the distribution of S. bungeana grassland across China. Since 56.1% of its past distribution area (4.9×104 km2) disappeared in the last 50 a, the present realizable distribution area only amounts to 2.2×104 km2. But only 15.7% of its present potential distribution area (14.0×104 km2) is actually occupied by the S. bungeana grassland. The future potential distribution of S. bungeana grassland was predicted to shift towards northwest, and the total area of this ecosystem will shrink by 12.4% over the next 50 a under the most pessimistic climate change scenario. Accordingly, following the IUCN-RLE criteria, we deemed the S. bungeana grassland ecosystem in China to be endangered (EN). Revegetation projects and the establishment of protected areas are recommended as effective ways to avert this looming crisis. This empirical modeling study provides an example of how IUCN-RLE categories and criteria may be valuably used for ecosystem assessments in China and abroad.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits6748Downloads423 Comment 0

10. chinaXiv:201907.00003 [pdf]

Silurian-Devonian sub-parallel ridge-trench interaction in Western Junggar and North-Central Tianshan in NW China: Alternative genesis of archipelagic architecture

Zhang, Ji'en; Chen, Yichao; Xiao, Wenjiao; Wakabayashi, John; Windley, Brian F.; Song, Shuaihua; Yin, Jiyuan
Subjects: Geosciences >> Geology

Western Junggar and North-Central Tianshan in NW China comprise a double magmatic belt, which evolved as a result of 446-380 Ma SSZ-type gabbro-basalt-andesite-diorite-granite-rhyolite magmatism that intruded a 504-446 Ma accretionary complex in SW Junggar and coeval magmatic arc in Central Tianshan. This orogenic framework is interpreted as a product of sub-parallel ridge-trench interaction, which generated the double magmatic belt together with adakitic intrusions in the older accretionary complex. In this model, a buoyant subducted ridge stalled and separated the double magmatic belts, resulting in the opening of a new 414-325 Ma intra-arc ocean, which is represented by Nb-depleted OIB- and MORB-type ophiolites. Mafic rocks generated by sea floor spreading in the modern Gulf of California record a similar evolution and chemistry. This new ocean split the northern accretionary complex along Mt. Xiemisitai-Barleik-Mayile line, leading to deposition of Devonian shallow marine-terrestrial sediments and cessation of magmatism at 380-349 Ma; this evolution also resembles that of the late Cenozoic passive margins of Baja California. Subsequent removal of the new ocean and its ridge-subduction gave rise to an archipelagic framework in the Late Paleozoic. A worldwide analysis of published examples of sub-parallel ridge-trench interaction indicates that a ridge jump can lead to multiple episodes of subduction, which could occur long before terminal ocean closure.

submitted time 2019-07-03 Hits3323Downloads765 Comment 0

123456789  Last  Go  [9 Pages/ 85 Totals]