• 土壤含水量对探地雷达探测植物根系构型精度的影响

    Subjects: Geosciences >> Geography submitted time 2024-04-29 Cooperative journals: 《干旱区研究》

    Abstract: Root biomass is an important part of the soil ecosystem, however, due to the limitations of measurement techniques and methods, it is impossible to rapidly assess it. The ground penetrating radar (GPR) is an efficient and nondestructive geophysical tool through which root information can be obtained without damaging the soil environment. However, accuracy during the detection and identification of underground roots by GPR is significantly affected by many factors such as soil water content, root roughness, length, and extension direction. In particular, soil water content has an obvious effect on root detection. In this study, in situ root embedding detection experiments were carried out to investigate the influence of soil water content on root detection via GPR. Combined with the changes in wave velocity, amplitude, and the root reflection coefficient of the GPR, the root point identification rate and root point distance root point root mean square error were analyzed under different average soil water content. The results showed that (1) the wave velocity and amplitude of the GPR were important parameters to determine variations in soil water conten during root detection; (2) the GPR’s velocity decreased and the radar amplitude flattened with the increasing soil water content; (3) as the root diameter increased at different soil depths, the GPR’s wave velocity also increased and the GPR’s amplitude tended to be drastic changes; (4) the root point recognition rate and soil water content were negatively correlated (P

  • 旱塬区全生物降解地膜覆盖对冬小麦生长发育的影响

    Subjects: Geosciences >> Other Disciplines of Geosciences submitted time 2019-09-11 Cooperative journals: 《干旱区研究》

    Abstract:为探明旱塬区全生物降解地膜(降解地膜)对冬小麦生长发育的影响,于2011—2016年连续5季设普通地膜覆土栽培、降解地膜覆土栽培和露地3个处理,分析冬小麦生育期土壤水分、温度和产量的差异。结果表明:冬小麦全生育期土壤贮水消耗量为露地>降解地膜>普通地膜,3个处理耗水高峰期依次为灌浆期、拔节期和返青期;冬小麦播种—拔节期,早、中、晚3个时间段土壤温度表现为降解地膜高于普通地膜和露地,15~20 cm土壤温度为降解地膜较普通地膜处理低0.26 ℃,返青—拔节期地表温度为普通地膜>降解地膜>露地;降解地膜在拔节期和收获后0~200 cm土壤硝态氮积累量高于普通地膜,露地差异不显著;降解地膜较普通地膜的冬小麦产量和水分利用效率分别降低3.43%和5.55%;翻耕压埋90 d后降解地膜降解80%以上,135 d后完全降解。因此,旱塬区降解地膜可以替代普通聚乙烯地膜,并用于冬小麦覆土栽培。