Current Location:home > Browse

1. chinaXiv:202001.00058 [pdf]

基于不同卫星光谱模拟的土壤电导率估算研究

曹肖奕; 丁建丽; 葛翔宇; 梁静; 陈文倩; 陈香月; 唐普恩
Subjects: Geosciences >> Geography

土壤电导率 (Electrical conductivity, EC)是评价土壤盐渍化的重要指标。通过实测新疆艾比湖湿地自然保护区土壤EC及可见光—近红外光谱数据,利用波谱响应技术模拟Landsat 8 OLI、Sentinel 2、Sentinel 3卫星的宽波段数据。构建宽波段模拟数据及其5种预处理后的三维光谱指数 (Three-dimensional spectral index, TDSI),采用梯度提升回归树算法 (Gradient boosting regression tree, GBRT) 建立3种卫星土壤EC估算模型,并比对加入TDSI后模型精度的变化。结果表明:在不同土壤EC条件下,3种卫星具有相似的光谱趋势,均在红、近红外波段附近反射率较高;TDSI与土壤EC相关性基本均在0.4以上,最大程度保留了与土壤EC敏感度高的红、绿、蓝、近红外、短波红外波段信息;GBRT对于土壤EC估算能力表现突出,3种卫星对土壤EC的最佳预测精度R2分别为0.831、0.847、0.903,在加入TDSI后,R2分别提高至0.835、0.857、0.935,综合分析发现,Sentinel 3对土壤EC估算效果最佳 (R2=0.935,均方根误差RMSE=2.986 mS·cm-1,赤池信息准则AIC=57.500)。通过利用波谱响应技术结合TDSI深度挖掘波段间的协同信息,采用GBRT验证了不同卫星对土壤R2的估算效果,二者相结合可以有效提升模型预测精度,为干旱区土壤盐渍化定量监测与防控提供有利指导。

submitted time 2020-01-06 From cooperative journals:《干旱区地理》 Hits5688Downloads720 Comment 0

2. chinaXiv:201909.00056 [pdf]

基于Sentinel-2数据的干旱区典型绿洲植被叶绿素含量估算

顾峰; 丁建丽; 葛翔宇; 高石宝; 王敬哲
Subjects: Geosciences >> Other Disciplines of Geosciences

以渭干河—库车河绿洲(渭—库绿洲)为研究区,采用在机器学习方面具有明显优势的随机森林回归算法,对绿洲内的4种典型植被(棉花、芦苇、杨树、大枣)叶片的叶绿素相对含量(soil and plant analyzer development, SPAD)进行估算和验证。首先基于“红边”处光谱信息丰富的哨兵2号(Sentinel-2)影像和由其衍生的一阶微分、二阶微分影像各提取23种对叶绿素敏感的宽波段光谱指数,加入3种影响植物生长的土壤参量(土壤含水量,土壤有机质,土壤电导率)作为影响叶片SPAD的特征变量,再根据以上特征变量对每种植被叶片各建立3种方案的SPAD估算模型,从而实现对绿洲内植被叶绿素的监测。结果表明:① 影像经一阶微分再提取的植被指数相比原位光谱植被指数,在SPAD估测模型中起到了更重要的作用,在随机森林算法的重要性排序中位居前列;② 4种植被叶片的SPAD估测模型都取得了不错的效果,芦苇叶片尤为显著,确定系数(R2)达到了0.926;③ 分析对比3种方案下模型预测能力,方案3(包含土壤参量)的预测能力卓越〔2.143<相对百分比偏差(RPD)<2.692〕,其预测能力排序为:方案3>方案1>方案2,土壤属性和模型预测结果有较强的非线性相关。Sentinel-2数据具有理想的估算绿洲植被叶绿素含量的潜力,提供了一种高效、低成本、潜在高精度的方案来估算叶绿素含量,可为干旱区绿洲农业、生态系统实现更有效的保护和管理提供参考。

submitted time 2019-09-11 From cooperative journals:《干旱区研究》 Hits8293Downloads778 Comment 0

  [1 Pages/ 2 Totals]