Current Location:home > Browse

1. chinaXiv:202006.00229 [pdf]

Application of a new wind driving force model in soil wind erosion area of northern China

ZOU Xueyong; LI Huiru; LIU Wei; WANG Jingpu; CHENG Hong; WU Xiaoxu; ZHANG Chunlai; KANG Liqiang
Subjects: Geosciences >> History of Geosciences

The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil. It is an independent factor influencing soil wind erosion. The factors related to wind erosivity, known as submodels, mainly include the weather factor (WF) in revised wind erosion equation (RWEQ), the erosion submodel (ES) in wind erosion prediction system (WEPS), as well as the drift potential (DP) in wind energy environmental assessment. However, the essential factors of WF and ES contain wind, soil characteristics and surface coverings, which therefore results in the interdependence between WF or ES and other factors (e.g., soil erodible factor) in soil erosion models. Considering that DP is a relative indicator of the wind energy environment and does not have the value of expressing wind to induce shear stress on the surface. Therefore, a new factor is needed to express accurately wind erosivity. Based on the theoretical basis that the soil loss by wind erosion (Q) is proportional to the shear stress of the wind on the soil surface, a new model of wind driving force (WDF) was established, which expresses the potential capacity of wind to drive soil mass in per unit area and a period of time. Through the calculations in the typical area, the WDF, WF and DP are compared and analyzed from the theoretical basis, construction goal, problem-solving ability and typical area application; the spatial distribution of soil wind erosion intensity was concurrently compared with the spatial distributions of the WDF, WF and DP values in the typical area. The results indicate that the WDF is better to reflect the potential capacity of wind erosivity than WF and DP, and that the WDF model is a good model with universal applicability and can be logically incorporated into the soil wind erosion models.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits130Downloads67 Comment 0

  [1 Pages/ 1 Totals]