Current Location:home > Browse

1. chinaXiv:202006.00238 [pdf]

Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes

QIAO Xianguo; GUO Ke; LI Guoqing; ZHAO Liqing; LI Frank Yonghong; GAO Chenguang
Subjects: Geosciences >> History of Geosciences

The criteria used by International Union for Conservation of Nature (IUCN) for its Red List of Ecosystems (RLE) are the global standards for ecosystem-level risk assessment, and they have been increasingly used for biodiversity conservation. The changed distribution area of an ecosystem is one of the key criteria in such assessments. The Stipa bungeana grassland is one of the most widely distributed grasslands in the warm-temperate semi-arid regions of China. However, the total distribution area of this grassland was noted to have shrunk and become fragmented because of its conversion to cropland and grazing-induced degradation. Following the IUCN-RLE standards, here we analyzed changes in the geographical distribution of this degraded grassland, to evaluate its degradation and risk of collapse. Past (1950–1980) distribution areas were extracted from the Vegetation Map of China (1:1,000,000). Present realizable distribution areas were equated to these past areas minus any habitat area losses. We then predicted the grassland's present and future (under the Representative Concentration Pathway 8.5 scenario) potential distribution areas using maximum entropy algorithm (MaxEnt), based on field survey data and nine environmental layers. Our results showed that the S. bungeana grassland was mainly distributed in the Loess Plateau, Hexi Corridor, and low altitudes of the Qilian Mountains and Longshou Mountain. This ecosystem occurred mainly on loess soils, kastanozems, steppe aeolian soils and sierozems. Thermal and edaphic factors were the most important factors limiting the distribution of S. bungeana grassland across China. Since 56.1% of its past distribution area (4.9×104 km2) disappeared in the last 50 a, the present realizable distribution area only amounts to 2.2×104 km2. But only 15.7% of its present potential distribution area (14.0×104 km2) is actually occupied by the S. bungeana grassland. The future potential distribution of S. bungeana grassland was predicted to shift towards northwest, and the total area of this ecosystem will shrink by 12.4% over the next 50 a under the most pessimistic climate change scenario. Accordingly, following the IUCN-RLE criteria, we deemed the S. bungeana grassland ecosystem in China to be endangered (EN). Revegetation projects and the establishment of protected areas are recommended as effective ways to avert this looming crisis. This empirical modeling study provides an example of how IUCN-RLE categories and criteria may be valuably used for ecosystem assessments in China and abroad.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits2607Downloads152 Comment 0

2. chinaXiv:201909.00009 [pdf]

Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China

WU Jun
Subjects: Geosciences >> Geography

Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practices affect the soil aggregates and soil organic carbon (SOC) and total nitrogen (TN) contents in the aggregate fractions based on a long-term (approximately 15 years) field experiment in the semi-arid western Loess Plateau, northwestern China. The experiment included four soil treatments, i.e., conventional tillage with straw removed (T), conventional tillage with straw incorporated (TS), no tillage with straw removed (NT) and no tillage with straw retention (NTS), which were arranged in a complete randomized block design. The wet-sieving method was used to separate four size fractions of aggregates, namely, large macroaggregates (LA, >2000 μm), small macroaggregates (SA, 250–2000 μm), microaggregates (MA, 53–250 μm), and silt and clay (SC, <53 μm). Compared to the conventional tillage practices (including T and TS treatments), the percentages of the macroaggregate fractions (LA and SA) under the conservation tillage practices (including NT and NTS treatments) were increased by 41.2%–56.6%, with the NTS treatment having the greatest effect. For soil layers of 0–5, 5–10 and 10–30 cm, values of the mean weight diameter (MWD) under the TS and NTS treatments were 10.68%, 13.83% and 17.65%, respectively. They were 18.45%, 19.15% and 14.12% higher than those under the T treatment, respectively. The maximum contents of the aggregate-associated SOC and TN were detected in the SA fraction, with the greatest effect being observed for the NTS treatment. The SOC and TN contents were significantly higher under the NTS and TS treatments than under the T treatment. Also, the increases in SOC and TN levels were much higher in the straw-retention plots than in the straw-removed plots. The macroaggregates (including LA and SA fractions) were the major pools for SOC and TN, regardless of tillage practices, storing 3.25–6.81 g C/kg soil and 0.34–0.62 g N/kg soil. Based on the above results, we recommend the NTS treatment as the best option to boost soil aggregates and to reinforce carbon and nitrogen sequestration in soils in the semi-arid western Loess Plateau of northwestern China.

submitted time 2019-08-30 From cooperative journals:《Journal of Arid Land》 Hits8992Downloads419 Comment 0

3. chinaXiv:201906.00042 [pdf]

Effect of pruning intensity on soil moisture and water use efficiency in jujube (Ziziphus jujube Mill.) plantations in the hilly Loess Plateau Region, China

JIN Shanshan
Subjects: Geosciences >> Geography

Jujube (Ziziphus jujube Mill.) is a traditional economic forest crop and is widely cultivated in hilly areas of the Loess Plateau, China. However, soil desiccation was discovered in jujube plantations. Pruning is recognized as a water-saving method that can reduces soil water consumption. In this study, we monitored the jujube plots with control (CK), light (C1), medium (C2) and high (C3) pruning intensities during the jujube growing period of 2012–2015 to explore the effect of pruning intensity on soil moisture and water use efficiency (WUE) of jujube plantations in the hilly Loess Plateau Region. The results showed that pruning is an effective method for soil water conservation in jujube plantations. Soil moisture increased with increasing pruning intensity during the jujube growing period of 2012–2015. C1, C2 and C3 pruning intensities increased soil water storage by 6.1–18.3, 14.4–40.0 and 24.3–63.3 mm, respectively, compared to CK pruning intensity. Pruning promoted soil moisture infiltration to deeper soil layer. Soil moisture infiltrated to soil depths of 240, 280 and >300 cm under C3 pruning intensity, 220, 260 and 260 cm under C2 pruning intensity, 200, 240 and 220 cm under C1 pruning intensity, and 180, 200 and 160 cm under CK pruning intensity in 2013, 2014 and 2015, respectively. Soil water deficit was alleviated by higher pruning intensity. In 2013–2015, soil water change was positive under C2 (6.4 mm) and C3 (26.8 mm) pruning intensities but negative under C1 (–20.5 mm) and CK (–40.6 mm) pruning intensities. Moreover, pruning significantly improved fresh fruit yield and WUE of jujube plants. Fresh fruit yields were highest under C1 pruning intensity with the values of 6897.1–13,059.3 kg/hm2, which were 2758.4–4712.8, 385.7–1432.1 and 802.8–2331.5 kg/hm2 higher than those under CK, C2, and C3 pruning intensities during the jujube growing period of 2012–2015, respectively. However, C3 pruning intensity had the highest WUE values of 2.92–3.13 kg/m3, which were 1.6–2.0, 1.1–1.2 and 1.0–1.1 times greater than those under CK, C1 and C2 pruning intensities, respectively. Therefore, C3 pruning intensity is recommended to jujube plantations for its economic and ecological benefits. These results provide an alternative strategy to mitigate soil desiccation in jujube plantations in the hilly Loess Plateau Region, which is critical for sustainable cultivation of economic forest trees in this region.

submitted time 2019-06-20 From cooperative journals:《Journal of Arid Land》 Hits7771Downloads452 Comment 0

4. chinaXiv:201903.00237 [pdf]

Spatial distribution of water-active soil layer along the south-north transect in the Loess Plateau of China

ZHAO Chunlei; SHAO Ming'an
Subjects: Geosciences >> Geography

Soil water is an important composition of water recycle in the soil-plant-atmosphere continuum. However, intense water exchange between soil-plant and soil-atmosphere interfaces only occurs in a certain layer of the soil profile. For deep insight into water active layer (WAL, defined as the soil layer with a coefficient of variation in soil water content >10% in a given time domain) in the Loess Plateau of China, we measured soil water content (SWC) in the 0.0–5.0 m soil profile from 86 sampling sites along an approximately 860-km long south-north transect during the period 2013–2016. Moreover, a dataset contained four climatic factors (mean annual precipitation, mean annual evaporation, annual mean temperature and mean annual dryness index) and five local factors (altitude, slope gradient, land use, clay content and soil organic carbon) of each sampling site was obtained. In this study, three WAL indices (WAL-T (the thickness of WAL), WAL-CV (the mean coefficient of variation in SWC within WAL) and WAL-SWC (the mean SWC within WAL)) were used to evaluate the characteristics of WAL. The results showed that with increasing latitude, WAL-T and WAL-CV increased firstly and then decreased. WAL-SWC showed an opposite distribution pattern along the south-north transect compared with WAL-T and WAL-CV. Average WAL-T of the transect was 2.0 m, suggesting intense soil water exchange in the 0.0–2.0 m soil layer in the study area. Soil water exchange was deeper and more intense in the middle region than in the southern and northern regions, with the values of WAL-CV and WAL-T being 27.3% and 4.3 m in the middle region, respectively. Both climatic (10.1%) and local (4.9%) factors influenced the indices of WAL, with climatic factors having a more dominant effect. Compared with multiple linear regressions, pedotransfer functions (PTFs) from arti?cial neural network can better estimate the WAL indices. PTFs developed by artificial neural network respectively explained 86%, 81% and 64% of the total variations in WAL-T, WAL-SWC and WAL-CV. Knowledge of WAL is crucial for understanding the regional water budget and evaluating the stable soil water reserve, regional water characteristics and eco-hydrological processes in the Loess Plateau of China.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits8955Downloads1010 Comment 0

5. chinaXiv:201810.00183 [pdf]

Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment

WANG Linhua; WANG Yafeng; Keesstra SASKIA; Cerdà ARTEMI; MA Bo; WU Faqi
Subjects: Geosciences >> History of Geosciences

Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1–R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1–R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.

submitted time 2018-10-29 From cooperative journals:《Journal of Arid Land》 Hits3059Downloads750 Comment 0

6. chinaXiv:201810.00185 [pdf]

Impact of large-scale vegetation restoration project on summer land surface temperature on the Loess Plateau, China

HE, Guohua; ZHAO, Yong; WANG, Jianhua; WANG, Qingming; ZHU, Yongnan
Subjects: Geosciences >> History of Geosciences

A large-scale afforestation project has been carried out since 1999 in the Loess Plateau of China. However, vegetation-induced changes in land surface temperature (LST) through the changing land surface energy balance have not been well documented. Using satellite measurements, this study quantified the contribution of vegetation restoration to the changes in summer LST and analyzed the effects of different vegetation restoration patterns on LST during both daytime and nighttime. The results show that the average daytime LST decreased by 4.3°C in the vegetation restoration area while the average nighttime LST increased by 1.4°C. The contributions of the vegetation restoration project to the changes in daytime LST and nighttime LST are 58% and 60%, respectively, which are far greater than the impact of climate change. The vegetation restoration pattern of cropland (CR) converting into artificial forest (AF) has a cooling effect during daytime and a warming effect at nighttime, while the conversion of CR to grassland has an opposite effect compared with the conversion of CR to AF. Our results indicate that increasing evapotranspiration caused by the vegetation restoration on the Loess Plateau is the controlling factor of daytime LST change, while the nighttime LST change is affected by soil humidity and air humidity.

submitted time 2018-10-29 From cooperative journals:《Journal of Arid Land》 Hits3676Downloads787 Comment 0

7. chinaXiv:201809.00164 [pdf]

Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China

ZHENG Jing; FAN Junliang; ZHANG Fucang; YAN Shicheng; GUO Jinjin; CHEN Dongfeng; LI Zhijun
Subjects: Geosciences >> History of Geosciences

High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices (i.e., mulching mode treatments: flat cultivation with non-mulching, flat cultivation with straw mulching, plastic-covered ridge with bare furrow and plastic-covered ridge with straw-covered furrow; and planting density treatments: low planting density of 45,000 plants/hm2, medium planting density of 67,500 plants/hm2 and high planting density of 90,000 plants/hm2) on rainfall partitioning by dryland maize canopy, especially the resulted net rainfall input beneath the maize canopy, we measured the gross rainfall, throughfall and stemflow at different growth stages of dryland maize in 2015 and 2016 on the Loess Plateau of China. The canopy interception loss was estimated by the water balance method. Soil water storage, leaf area index, grain yield (as well as it components) and water use efficiency of dryland maize were measured or calculated. Results showed that the cumulative throughfall, cumulative stemflow and cumulative canopy interception loss during the whole growing season accounted for 42.3%–77.5%, 15.1%–36.3% and 7.4%–21.4% of the total gross rainfall under different treatments, respectively. Soil mulching could promote the growth and development of dryland maize and enhance the capability of stemflow production and canopy interception loss, thereby increasing the relative stemflow and relative canopy interception loss and reducing the relative throughfall. The relative stemflow and relative canopy interception loss generally increased with increasing planting density, while the relative throughfall decreased with increasing planting density. During the two experimental years, mulching mode had no significant influence on net rainfall due to the compensation between throughfall and stemflow, whereas planting density significantly affected net rainfall. The highest grain yield and water use efficiency of dryland maize were obtained under the combination of medium planting density of 67,500 plants/hm2 and mulching mode of plastic-covered ridge with straw-covered furrow. Soil mulching can reduce soil evaporation and retain more soil water for dryland maize without reducing the net rainfall input beneath the maize canopy, which may alleviate the contradiction between high soil water consumption and insufficient rainfall input of the soil. In conclusion, the application of medium planting density (67,500 plants/hm2) under plastic-covered ridge with bare furrow is recommended for increasing dryland maize production on the Loess Plateau of China.

submitted time 2018-09-18 From cooperative journals:《Journal of Arid Land》 Hits2170Downloads504 Comment 0

8. chinaXiv:201809.00171 [pdf]

Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China

GUO, Mingming; WANG, Wenlong; KANG, Hongliang; YANG, Bo
Subjects: Geosciences >> History of Geosciences

Soil erosion on the Loess Plateau of China is effectively controlled due to the implementation of several ecological restoration projects that improve soil properties and reduce soil erodibility. However, few studies have examined the effects of vegetation restoration on soil properties and erodibility of gully head in the gully regions of the Loess Plateau. The objectives of this study were to quantify the effects of vegetation restoration on soil properties and erodibility in this region. Specifically, a control site in a slope cropland and 9 sites in 3 restored land-use types (5 sites in grassland, 3 in woodland and 1 in shrubland) in the Nanxiaohegou watershed of a typical gully region on the Loess Plateau were selected, and soil and root samples were collected to assess soil properties and root characteristics. Soil erodibility factor was calculated by the Erosion Productivity Impact Calculator method. Our results revealed that vegetation restoration increased soil sand content, soil saturated hydraulic conductivity, organic matter content and mean weight diameter of water-stable aggregate but decreased soil silt and clay contents and soil disintegration rate. A significant difference in soil erodibility was observed among different vegetation restoration patterns or land-use types. Compared with cropland, soil erodibility decreased in the restored lands by 3.99% to 21.43%. The restoration patterns of Cleistogenes caespitosa K. and Artemisia sacrorum L. in the grassland showed the lowest soil erodibility and can be considered as the optimal vegetation restoration pattern for improving soil anti-erodibility of the gully heads. Additionally, the negative linear change in soil erodibility for grassland with restoration time was faster than those of woodland and shrubland. Soil erodibility was significantly correlated with soil particle size distribution, soil disintegration rate, soil saturated hydraulic conductivity, water-stable aggregate stability, organic matter content and root characteristics (including root average diameter, root length density, root surface density and root biomass density), but it showed no association with soil bulk density and soil total porosity. These findings indicate that although vegetation destruction is a short-term process, returning the soil erodibility of cropland to the level of grassland, woodland and shrubland is a long-term process (8–50 years).

submitted time 2018-09-18 From cooperative journals:《Journal of Arid Land》 Hits2186Downloads627 Comment 0

  [1 Pages/ 8 Totals]