Current Location:home > Browse

1. chinaXiv:202102.00064 [pdf]

Spatial variability and temporal stability of actual evapotranspiration on a hillslope of the Chinese Loess Plateau

ZHANG Yongkun; HUANG Mingbin
Subjects: Geosciences >> Geography

Actual evapotranspiration (ETa) is a key component of water balance. This study aimed to investigate the spatial variability and time stability of ETa along a hillslope and to analyze the key factors that control the spatiotemporal variability of ETa. The potential evaporation, surface runoff and 0–480 cm soil water profile were measured along a 243 m long transect on a hillslope of the Loess Plateau during the normal (2015) and wet (2016) water years. ETa was calculated using water balance equation. Results indicated that increasing precipitation during the wet water year did not alter the spatial pattern of ETa along the hillslope; time stability analysis showed that a location with high time stability of ETa could be used to estimate the mean ETa of the hillslope. Time stability of ETa was positively correlated with elevation (P<0.05), indicating that, on a hillslope in a semi-arid area, elevation was the primary factor influencing the time stability of ETa.

submitted time 2021-02-10 From cooperative journals:《Journal of Arid Land》 Hits523Downloads272 Comment 0

2. chinaXiv:202011.00132 [pdf]

Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress

PEI,Yanwu; HUANG,Laiming; SHAO,Ming'an; ZHANG,Yinglong
Subjects: Geosciences >> Geography

Amygdalus pedunculata Pall. is a major species that is widely planted in afforested soils with different textures in the transitional zone between Mu Us Desert and Loess Plateau, China. However, the responses of A. pedunculata to increasing intensity of water stress in different textural soils are not clear. Here, we conducted a soil column experiment to evaluate the effects of different textures (sandy and loamy) on water consumption, water use efficiency (WUE), biomass accumulation and ecological adaptability of A. pedunculata under increasing water stress, i.e., 90% (±5%) FC (field capacity), 75% (±5%) FC, 60% (±5%) FC, 45% (±5%) FC and 30% (±5%) FC in 2018. A. pedunculata grown in the sandy soil with the lowest (30% FC) and highest (90% FC) water contents had respectively 21.3%–37.0% and 4.4%–20.4% less transpiration than those with other water treatments (45%–75% FC). In contrast, A. pedunculata transpiration in the loamy soil decreased with decreasing water content. The magnitude of decrease in transpiration increased with increasing level of water deficit (45% and 30% FC). Mean daily and cumulative transpirations of the plant were significantly lower in the sandy soil than in the loamy soil under good water condition (90% FC), but the reverse was noted under water deficit treatments (45% and 30% FC). Plant height, stem diameter and total biomass initially increased with decreasing water content from 90% to 75% FC and then declined under severe water deficit conditions (45% and 30% FC) in the sandy soil. However, these plant parameters decreased with decreasing water content in the loamy soil. WUE in the sandy soil was 7.8%–12.3% higher than that in the loamy soil, which initially increased with decreasing water content from 90% to 75% FC and then declined under water deficit conditions (45% and 30% FC). The study showed that plant transpiration, biomass production and WUE responded differentially to increasing intensity of water stress in the sandy and loamy soils. The contrasting responses of A. pedunculata to water stress in different textural soils can guide future revegetation programs in the northern region of Chinese Loess Plateau by considering plant adaptability to varying soil and water conditions.

submitted time 2020-11-25 From cooperative journals:《Journal of Arid Land》 Hits2501Downloads457 Comment 0

3. chinaXiv:202010.00031 [pdf]

Factors determining soil water heterogeneity on the Chinese Loess Plateau as based on an empirical mode decomposition method

GONG,Yidan; XING Xuguang; WANG Weihua
Subjects: Geosciences >> History of Geosciences

Soil water is a critical resource, and as such is the focus of considerable physical research. Characterization of the distribution and spatial variability of soil water content (SWC) offers important agronomic and environmental information. Estimation of non-stationary and non-linear SWC distribution at different scales is a research challenge. Based on this context, we performed a case study on the Chinese Loess Plateau, with objectives of investigating spatial variability of SWC and soil properties (i.e., soil particle composition, organic matter and bulk density), and determining multi-scale correlations between SWC and soil properties. A total of 86 in situ sampling sites were selected and 516 soil samples (0–60 cm depth with an interval of 10 cm) were collected in May and June of 2019 along the Yangling-Wugong-Qianxian transect, with a length of 25.5 km, in a typical wheat-corn rotation region of the Chinese Loess Plateau. Classical statistics and empirical mode decomposition (EMD) method were applied to evaluate characteristics of the overall and scale-specific spatial variation of SWC, and to explore scale-specific correlations between SWC and soil properties. Results showed that the spatial variability of SWC along the Yangling-Wugong-Qianxian transect was medium to weak, with a variability coefficient range of 0.06–0.18, and it was gradually decreased as scale increased. We categorized the overall SWC for each soil layer under an intrinsic mode function (IMF) number based on the scale of occurrence, and found that the component IMF1 exhibited the largest contribution rates of 36.45%–56.70%. Additionally, by using EMD method, we categorized the general variation of SWC under different numbers of IMFs according to occurrence scale, and the results showed that the calculated scales among SWC for each soil layer increased in correspondence with higher IMF numbers. Approximately 78.00% of the total variance of SWC was extracted in IMF1 and IMF2. Generally, soil texture was the dominant control on SWC, and the influence of the three types of soil properties (soil particle composition, organic matter and bulk density) was more prominent at larger scales along the sampling transect. The influential factors of soil water spatial distribution can be identified and ranked on the basis of the decomposed signal from the current approach, thereby providing critical information for other researchers and natural resource managers.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits572Downloads268 Comment 0

4. chinaXiv:201810.00179 [pdf]

Comparing phreatic evaporation at zero water table depth with water surface evaporation

HU, Shunjun; GAN, Yongde; CHEN, Yongbao
Subjects: Geosciences >> History of Geosciences

Salt-affected soils are mostly found in irrigated areas within arid and semi-arid regions where the groundwater table is shallow. Soils of this type have become an increasingly severe problem because they threaten both the environment and the sustainable development of irrigated agriculture. A tool to estimate phreatic evaporation is therefore urgently required to minimize the salinization potential of salt-affected areas. In this context, phreatic evaporation at zero water table depth (E0) is a key parameter for establishing a model for calculating phreatic evaporation. The aim of this study was to explore the law of phreatic evaporation and to develop structurally rational empirical models for calculating phreatic evaporation, based on E0 data of six types of soil (i.e., gravel, fine sand, sandy loam, light loam, medium loam, and heavy loam) observed using the non-weighing lysimeter and water surface evaporation (E601) data observed using a E601 evaporator of same evaporation area with a lysimeter-tube at the groundwater balance station of the Weigan River Management Office in Xinjiang Uygur Autonomous Region, China, during the non-freezing period (April to October) between 1990 and 1994. The relationship between E0 and E601 was analyzed, the relationship between the ratio of E0 to E601 and the mechanical compositions of different soils was presented, and the factors influencing E0 were discussed. The results of this study reveal that E0 is not equal to E601. In fact, only values of the former for fine sand are close to those of the latter. Data also show that E0 values are related to soil texture as well as to potential atmospheric evaporation, the ratio of E0 to E601 and the silt-clay particle content (grain diameter less than 0.02 mm) is negatively exponentially correlated, and that soil thermal capacity plays a key role in phreatic evaporation at E0. The results of this analysis therefore imply that the treatment of zero phreatic depth is an essential requirement when constructing groundwater balance stations to study the law of phreatic evaporation

submitted time 2018-10-29 From cooperative journals:《Journal of Arid Land》 Hits4289Downloads1169 Comment 0

  [1 Pages/ 4 Totals]