• Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran

    分类: 地球科学 >> 地理学 提交时间: 2021-01-15 合作期刊: 《干旱区科学》

    摘要: Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes, especially in arid and semi-arid regions. In this study, various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables. The Mann-Kendall test was considered to identify the trend, while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series. Meanwhile, time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests. The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones, however, after eliminating the serial correlation factor, this increasing trend changes to an insignificant decreasing trend at a 95% confidence level. The seasonal mean air temperature trend suggested a significant increase in the majority of the stations. The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semi-arid climatic zones. Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones; furthermore, most of the stations follow a decreasing trend for seasonal precipitation. Furthermore, spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming. Stationarity analysis indicated that the stationarity of climatic series influences on their trend; so that, the series which have significant trends are not static. The findings of this investigation can help planners and policy-makers in various fields related to climatic issues, implementing better management and planning strategies to adapt to climate change and variability over Iran.

  • Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China?

    分类: 地球科学 >> 地理学 提交时间: 2020-11-25 合作期刊: 《干旱区科学》

    摘要: There are eight provinces and autonomous regions (Gansu Province, Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous Region, Tibet Autonomous Region, Qinghai Province, Shanxi Province, and Shaanxi Province) in Northwest China, most areas of which are located in arid and semi-arid regions (northwest of the 400 mm precipitation line), accounting for 58.74% of the country's land area and sustaining approximately 7.84×106 people. Because of drought conditions and fragile ecology, these regions cannot develop agriculture at the expense of the environment. Given the challenges of global warming, the green total factor productivity (GTFP), taking CO2 emissions as an undesirable output, is an effective index for measuring the sustainability of agricultural development. Agricultural GTFP can be influenced by both internal production factors (labor force, machinery, land, agricultural plastic film, diesel, pesticide, and fertilizer) and external climate factors (temperature, precipitation, and sunshine duration). In this study, we used the Super-slacks-based measure (Super-SBM) model to measure agricultural GTFP during the period 2000–2016 at the regional level. Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period (2000–2016), and the fluctuation was caused by the production factors (input and output factors). To improve agricultural GTFP, Shaanxi, Shanxi, and Gansu should reduce agricultural labor force input; Shaanxi, Inner Mongolia, Gansu, and Shanxi should decrease machinery input; Shaanxi, Inner Mongolia, Xinjiang, and Shanxi should reduce fertilizer input; Shaanxi, Xinjiang, Gansu, and Ningxia should reduce diesel input; Xinjiang and Gansu should decrease plastic film input; and Gansu, Shanxi, and Inner Mongolia should cut pesticide input. Desirable output agricultural earnings should be increased in Qinghai and Tibet, and undesirable output (CO2 emissions) should be reduced in Inner Mongolia, Xinjiang, Gansu, and Shaanxi. Agricultural GTFP is influenced not only by internal production factors but also by external climate factors. To determine the influence of climate factors on GTFP in these provinces and autonomous regions, we used a Geographical Detector (Geodetector) model to analyze the influence of climate factors (temperature, precipitation, and sunshine duration) and identify the relationships between different climate factors and GTFP. We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions. For Xinjiang, Inner Mongolia, and Tibet, a suitable average annual temperature would be in the range of 7°C–9°C; for Gansu, Shanxi, and Ningxia, it would be 11°C–13°C; and for Shaanxi, it would be 15°C–17°C. Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture. Hence, in the agricultural production process, reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures, thereby improving the agricultural GTFP. The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions, identifying an effective way forward for the arid and semi-arid regions of Northwest China.

  • Rainfall patterns of Algerian steppes and the impacts on natural vegetation in the 20th century

    分类: 地球科学 >> 水文学 提交时间: 2018-07-05 合作期刊: 《干旱区科学》

    摘要: Since 1960, the steppe regions of North Africa have been subject to an increasing desertification, including the degradation of traditional pastures. The initially dominant species (Artemisia herba-alba, Lygeum spartum and Stipa tenacissima) declined and were progressively replaced by other species (Atractylis serratuloides and Salsola vermiculata) that are more tolerant to the new conditions. It is not clear whether these changes are due to anthropogenic reasons or climatic determinism. We have carried out a statistical analysis of the climate to detect putative rainfall changes during the 20th century in the Algerian steppes based on data from 9 meteorological stations, including 2 Saharan stations (El Oued and Touggourt), 3 pre-Saharan stations (Biskra, Laghouat and Ain Sefra) and 4 steppe stations (Djelfa, Saida, Mchria and El-Bayadh) located in the arid high plains, which represent the bioclimate diversities of the region. Previous studies suggested that significant rainfall changes for the 20th century only had records in the south of the Oran region. Most of the studies, however, looked at restricted territories over limited periods, and did not integrate the rainiest period 20042014. Our work is designed to integrate all the longest time series of meteorological data available for the steppe regions of Algeria. Our results confirm the spatial rainfall distribution (significant rainfall changes only recorded in the southwestern region) evidenced by previous studies, and reveal a decreasing rainfall gradient from northeastern to southwestern Algeria. Moreover, the results reveal a trend of significant decrease of rainfall in the southern Oran region, marked by two drought periods in 19801985 and 19992003. However, with the exception of the southwestern region, rainfall overall has not declined since the beginning of the 20th century. While less marked in other regions, the drought appear to have affected all territories of the Algerian steppe. Consequently, our study implies that the climate was not a leading influence in the on-going degradation of the vegetation cover of steppe landscapes. Such a vegetation evolution thus appears to be have been determined more by human activities than by climate forcing.