• THE ROLE OF LARGE AMPLITUDE UPSTREAM LOW-FREQUENCY WAVES IN THE GENERATION OF SUPERTHERMAL IONS AT A QUASI-PARALLEL COLLISIONLESS SHOCK: CLUSTER OBSERVATIONS

    分类: 地球科学 >> 空间物理学 提交时间: 2016-05-12

    摘要: The superthermal ions at a quasi-parallel collisionless shock are considered to be generated during the reformation of the shock. Recently, hybrid simulations of a quasi-parallel shock have shown that during the reformation of a quasi-parallel shock the large-amplitude upstream low-frequency waves can trap the reflected ions at the shock front when they try to move upstream, and then these reflected ions can be accelerated several times to become superthermal ions. In this paper, with the Cluster observations of a quasi-parallel shock event, the relevance between the large-amplitude upstream low-frequency waves and the superthermal ions (about several keV) have been studied. The observations clearly show that the differential energy flux of superthermal ions in the upstream region is modulated by the upstream low-frequency waves, and the maxima of the differential energy flux are usually located between the peaks of these waves (including the shock front and the peak of the upstream wave just in front of the shock front). These superthermal ions are considered to originate from the reflected ions at the shock front, and the modulation is caused due to the trapping of the reflected ions between the upstream waves or the upstream waves and the shock front when these reflected ions try to travel upstream. It verifies the results from hybrid simulations, where the upstream waves play an important role in the generation of superthermal ions in a quasi-parallel shock.