按提交时间
按主题分类
按作者
按机构
您选择的条件: 2020-6
  • Global Dryland Ecosystem Programme (G-DEP): Africa consultative meeting report

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: In order to enhance and restore the ecosystems of natural capital in African arid regions, the Global Dryland Ecosystem Programme (G-DEP) consultative meeting was hosted in Dakar, Senegal, from 23 to 25 September 2019. This paper details the first African meeting of the G-DEP. Consultative meeting reviewed preceding dryland ecosystems case studies, identified vulnerable arid and semi-arid regions, and proposed sustainable solutions to problems. It also identified the successes and failures of previous attempts to improve vulnerable ecosystems and ultimately formed an action plan to improve these attempts. Climate, ecosystems, and livelihoods for Sustainable Development Goals (SDGs), Great Green Wall Initiative (GGWI) for Sahara and Sahel, and China-Africa cooperation on science, technology, and innovation are three extra main sections concerned of the meeting. Separately, more specific topics as the complicated relationship between these natural processes and human activity, including pastoralism, soil restoration, and vegetation regenerate techniques, were fully discussed. Consultative meeting also identified the positive effects international collaboration can have on dryland regions, specifically in the capacity of sharing information, technology, and innovation on purpose to develop a joint proposal for long-term research programs in African arid and semi-arid areas. Moreover, meetings that review the progress made on ecosystem management for the sustainable livelihoods in Africa, identification of priority areas, and the development and implementation of ecosystem programs for proper research and collaboration in African arid and semi-arid zones, have been proposed as strategic recommendations to enhance the global partnership for sustainable development. Furthermore, as the outcomes of the workshop, there are three steps proposed to handle African dryland climate changes, several aspects suggested to solve current dilemmas of the GGWI, and a series of actions recommended for G-DEP related activities in Africa.

  • Market opportunities do not explain the ability of herders to meet livelihood objectives over winter on the Mongolian Plateau

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Drylands under pastoral land use are considered one of the most vulnerable social-ecological systems to global climate change, but the herders' abilities to adapt to the different extreme weather events have received little attention in the drylands. Herders on the Mongolian Plateau (MP; including Inner Mongolia Autonomous Region of China and Mongolia), have had a long history of adapting climatic variability and extreme weather events. However, it is unclear how changes such as increased levels of infrastructure and market integration affect the ability of herders to achieve the key livelihood objectives: the minimisation of the death and abortion rates of livestock in the winter. Here, we used remotely sensed and household survey data to map, model and explore the climate exposure and sensitivity of herders in the settled area (Inner Mongolia of China) and nomadic area (Mongolia) in the winter of 2012–2013. We aimed to quantify the multi-scaled characteristics of both climate exposure and sensitivity through the lens of key adaptive strategies utilized by herders. Our results showed that the higher levels of infrastructure and market integration, and the lower levels of remoteness on the MP did not increase the herders' ability to achieve the key livelihood objectives. Our results also suggested that exposure to the snow that is comparatively greater than the long-term average (cumulative exposure) may be more important in determining the social-ecological vulnerability than absolute exposure. We suggested that neither the risk management strategies available to these herders, nor the demographic variables, could compensate for the mode of production governing the pastoral systems. Our study could provide further evidence for the complex and scaled nature of climate exposure and sensitivity, and the results imply that any analysis of the relationship among exposure, sensitivity and vulnerability of pastoral households to climate change in the drylands will require a multi-scaled and interdisciplinary approach.

  • Effects of rodent-induced disturbance on eco-physiological traits of Haloxylon ammodendron in the Gurbantunggut Desert, Xinjiang, China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Disturbance by rodents alters the morphologies and nutrients of plants as well as the physical-chemical properties of the soils. Changes in plants are considered to be mechanisms of defense against the disturbance by rodents. Rodents gnaw on the assimilating branches of Haloxylon ammodendron (CA Mey.) Bunge and burrow under the bushes in the desert ecosystems of Xinjiang, China. However, eco-physiological responses of different age groups of H. ammodendron to the disturbance by rodents are not well understood. In this study, soil physical-chemical properties under the shrubs and the above-ground morphological, physiological and biochemical features of assimilating branches of H. ammodendron of different age groups (i.e., young, 30−100 cm; middle-aged, 100−200 cm; and mature, >200 cm) in burrowed and non-burrowed (control) areas were studied in 2018. We found that disturbance by rodents significantly increased the crown width and total branching rates of young and middle-aged H. ammodendron. Photosynthetic pigment contents of assimilating branches of H. ammodendron were significantly reduced under the disturbance by rodents. In term of plant nutrients, the main differences among different age groups of H. ammodendron under the disturbance by rodents occurred in the total soluble sugar and reducing sugar contents that decreased in young plants, increased in middle-aged plants, and did not affect in mature plants. Crude protein and phosphorus contents significantly increased, while crude fiber and calcium contents significantly decreased in young plants. Crude fat and calcium contents significantly decreased in middle-aged plants. Soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN) and available potassium (AK) contents in the topsoil (0–20 cm), which are conducive to forming ''fertile islands'', also increased under the disturbance by rodents. In particular, soil AN and AK were the major factors affecting the above-ground morphological characteristics of H. ammodendron in burrowed areas. Overall, the response and defense strategies of H. ammodendron to the disturbance by rodents differed among different age groups, and the effect of the disturbance by rodents on H. ammodendron gradually weakened with the increasing plant age.

  • Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A mini review

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Since 1996, transgenic Bacillus thuringiensis (Bt) cotton has been commercially grown in numerous countries in an effort to stem the losses caused by key lepidopteran pests. However, the development of pest resistance to Bt toxins has jeopardized the continued utilization of Bt cotton. As a strategy designed to circumvent the development of resistance, Bt cotton varieties expressing two or more toxins targeting the same pest have been introduced. Nevertheless, from the perspective of long-term planting of Bt cotton, the potential risk of cross-resistance to these Bt toxins is a threat that cannot be ignored. In this paper, we review current research (including that based on the analysis of protein binding sites and resistance genes) on the resistance of cotton bollworm (Helicoverpa armigera) to the Bt toxins Cry1Ac and Cry2Ab and the interrelationship between these toxins. On the basis of existing evidence, we assume that the actions of Cry1Ac and Cry2Ab against cotton bollworm are not completely independent, and then propose the ''resistance-associated gene mutation potential hypothesis''. Although the mechanisms underlying the resistance of pests to Bt toxins are yet to be comprehensively elucidated, this hypothesis could undoubtedly have important implications for adopting ''pyramid'' strategy in the future. Further research is recommended to devise strategies to retard the development of H. armigera resistance to Bt cotton, either using different Bt toxins or their various combinations.

  • Origin and circulation of saline springs in the Kuqa Basin of the Tarim Basin, Northwest China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: It is widely accepted that hydrogeochemistry of saline springs is extremely important to understand the water circulation and evolution of saline basins and to evaluate the potential of potassium-rich evaporites. The Kuqa Basin, located in the northern part of the Tarim Basin in Northwest China, is a saline basin regarded as the most potential potash-seeking area. However, the origin and water circulation processes of saline springs have yet to be fully characterized in this saline basin. In this study, a total of 30 saline spring samples and 11 river water samples were collected from the Qiulitage Structural Belt (QSB) of the Kuqa Basin. They were analyzed for major (K+, Ca2+, Na+, Mg2+, SO42, Cl and HCO3) and trace (Sr2+ and Br) ion concentrations, stable H-O-Sr isotopes and tritium concentrations in combination with previously published hydrogeochemical and isotopic (H-O) data in the same area. It is found that the water chemical type of saline springs in the study area belonged to the Na-Cl type, and that of river water belonged to the Ca-Mg-HCO3-SO4 type. The total dissolved solid (TDS) of saline springs in the QSB ranged from 117.77 to 314.92 g/L, reaching the brine level. On the basis of the general chemical compositions and the characteristics of the stable H-O-Sr isotopes of saline springs, we infer that those saline springs mainly originated from precipitation following river water recharging. In addition, we found that saline springs were not formed by evapo-concentration because it is unlikely that the high chloride concentration of saline springs resulted in evapo-concentration and high salinity. Therefore, we conclude that saline spring water may have experienced intense evapo-concentration before dissolving the salty minerals or after returning to the surface. The results show that the origin of salinity was mainly dominated by dissolving salty minerals due to the river water and/or precipitation that passed through the halite-rich stratum. Moreover, there are two possible origins of saline springs in the QSB: one is the infiltration of the meteoric water (river water), which then circulates deep into the earth, wherein it dissolves salty minerals, travels along the fault and returns to the surface; another is the mixture of formation water, or the mixture of seawater or marine evaporate sources and its subsequent discharge to the surface under fault conditions. Our findings provide new insight into the possible saltwater circulation and evolution of saline basins in the Tarim Basin.

  • Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Drought is one of the most significant environmental disasters, especially in arid and semi-arid regions. Drought indices as a tool for management practices seeking to deal with the drought phenomenon are widely used around the world. One of these indicators is the Palmer drought severity index (PDSI), which is used in many parts of the world to assess the drought situation and continuation. In this study, the drought state of Fars Province in Iran was evaluated by using the PDSI over 1995–2014 according to meteorological data from six weather stations in the province. A statistical downscaling model (SDSM) was used to apply the output results of the general circulation model in Fars Province. To implement data processing and prediction of climate data, a statistical period 1995–2014 was considered as the monitoring period, and a statistical period 2019–2048 was for the prediction period. The results revealed that there is a good agreement between the simulated precipitation (R2>0.63; R2, determination coefficient; MAE0.95, MAE<1.74, and RMSE<1.78) with the observed data from the stations. The results of the drought monitoring model presented that dry periods would increase over the next three decades as compared to the historical data. The studies showed the highest drought in the meteorological stations Abadeh and Lar during the prediction period under two future scenarios representative concentration pathways (RCP4.5 and RCP8.5). According to the results of the validation periods and efficiency criteria, we suggest that the SDSM is a proper tool for predicting drought in arid and semi-arid regions.

  • Assessing the collapse risk of Stipa bungeana grassland in China based on its distribution changes

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: The criteria used by International Union for Conservation of Nature (IUCN) for its Red List of Ecosystems (RLE) are the global standards for ecosystem-level risk assessment, and they have been increasingly used for biodiversity conservation. The changed distribution area of an ecosystem is one of the key criteria in such assessments. The Stipa bungeana grassland is one of the most widely distributed grasslands in the warm-temperate semi-arid regions of China. However, the total distribution area of this grassland was noted to have shrunk and become fragmented because of its conversion to cropland and grazing-induced degradation. Following the IUCN-RLE standards, here we analyzed changes in the geographical distribution of this degraded grassland, to evaluate its degradation and risk of collapse. Past (1950–1980) distribution areas were extracted from the Vegetation Map of China (1:1,000,000). Present realizable distribution areas were equated to these past areas minus any habitat area losses. We then predicted the grassland's present and future (under the Representative Concentration Pathway 8.5 scenario) potential distribution areas using maximum entropy algorithm (MaxEnt), based on field survey data and nine environmental layers. Our results showed that the S. bungeana grassland was mainly distributed in the Loess Plateau, Hexi Corridor, and low altitudes of the Qilian Mountains and Longshou Mountain. This ecosystem occurred mainly on loess soils, kastanozems, steppe aeolian soils and sierozems. Thermal and edaphic factors were the most important factors limiting the distribution of S. bungeana grassland across China. Since 56.1% of its past distribution area (4.9×104 km2) disappeared in the last 50 a, the present realizable distribution area only amounts to 2.2×104 km2. But only 15.7% of its present potential distribution area (14.0×104 km2) is actually occupied by the S. bungeana grassland. The future potential distribution of S. bungeana grassland was predicted to shift towards northwest, and the total area of this ecosystem will shrink by 12.4% over the next 50 a under the most pessimistic climate change scenario. Accordingly, following the IUCN-RLE criteria, we deemed the S. bungeana grassland ecosystem in China to be endangered (EN). Revegetation projects and the establishment of protected areas are recommended as effective ways to avert this looming crisis. This empirical modeling study provides an example of how IUCN-RLE categories and criteria may be valuably used for ecosystem assessments in China and abroad.

  • Snow resisting capacity of Caragana microphylla and Achnatherum splendens in a typical steppe region of Inner Mongolia, China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration, growth and nutrient circulation of vegetation in grassland. This study investigated vegetation characteristics (canopy height, canopy length and crown width) of Caragana microphylla Lam. (shrub) and Achnatherum splendens (Trin.) Nevski. (herb), and snow morphologies (snow depth, snow width and snow braid length) in a typical steppe region of Inner Mongolia, China in 2017. And the influence of vegetation characteristic on snow resisting capacity (the indices of bottom area of snow and snow volume reflect snow resisting capacity) was analyzed. The results showed that snow morphology depends on vegetation characteristics of shrub and herb. The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width. The canopy length was found to have little influence on morphological parameters of snow. When the windward areas of C. microphylla and A. splendens were within the ranges of 0.0–0.5 m2 and 0.0–8.0 m2, respectively, the variation of snow cover was large; however, beyond these areas, the variation of snow cover became gradually stable. The potential area of snow retardation for a single plant was 1.5–2.5 m2 and the amount of snow resistance was 0.15–0.20 m3. The bottom area of snow and snow volume (i.e., snow resisting capacity) of clumped C. microphylla and A. splendens was found to be 4 and 25 times that of individual plant, respectively. The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.

  • Maternal salinity improves yield, size and stress tolerance of Suaeda fruticosa seeds

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Shrubby seablite or lani (Suaeda fruticosa Forssk) is a perennial euhalophyte with succulent leaves, which could be planted on arid-saline lands for restoration and cultivated as a non-conventional edible or cash crop. Knowledge about the impacts of maternal saline environment on seed attributes of this important euhalophyte is lacking. This study investigated the effects of maternal salinity on yield, size and stress tolerance of S. fruticosa seeds. Seedlings of S. fruticosa were grown in a green net house under increasing maternal salinity levels (0, 300, 600 and 900 mM NaCl) until seed production. Total yield, size, stress tolerance and germination of the descended seeds under different maternal saline conditions were examined. Plants grown under saline conditions (300, 600 and 900 mM NaCl) produce a substantially higher quantity of seeds than plants grown under non-saline condition (0 mM NaCl). Low maternal salinity (300 mM NaCl) improves seed size. Seeds produced under all maternal salinity levels display a higher tolerance to low temperature (night/day thermoperiod of 10°C/20°C), whereas seeds produced under 300 mM NaCl maternal saline condition show a better tolerance to high temperature (night/day thermoperiod of 25°C/35°C) during germination. Seeds from all maternal saline conditions germinate better in the 12 h photoperiod (12 h light/12 h dark) than in the dark (24 h dark); however, seeds produced from low and moderate maternal saline conditions (300 and 600 mM NaCl) show a higher germination in the dark than those from control and high maternal saline conditions (0 and 900 mM NaCl). In general, maternal salinity is found to improve yield, size and stress tolerance of S. fruticosa seeds.

  • Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming. The Qinghai-Tibet Plateau (QTP) of China is an ecologically fragile zone that is sensitive to global climate warming. It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming. In this study, we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years (2011–2018). We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales, including an early stage of warming (2011–2013) and a late stage of warming (2016–2018), in order to explore the response of alpine meadows to short-term (three years) and long-term warming (eight years). The results showed that the short-term warming increased air temperature by 0.31°C and decreased relative humidity by 2.54%, resulting in the air being warmer and drier. The long-term warming increased air temperature and relative humidity by 0.19°C and 1.47%, respectively, and the air tended to be warmer and wetter. The short-term warming increased soil temperature by 2.44°C and decreased soil moisture by 12.47%, whereas the long-term warming increased soil temperature by 1.76°C and decreased soil moisture by 9.90%. This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming. Furthermore, the degree of soil drought was alleviated with increased warming duration. Under the long-term warming, the importance value and aboveground biomass of plants in different families changed. The importance values of grasses and sedges decreased by 47.56% and 3.67%, respectively, while the importance value of weeds increased by 1.37%. Aboveground biomass of grasses decreased by 36.55%, while those of sedges and weeds increased by 8.09% and 15.24%, respectively. The increase in temperature had a non-significant effect on species diversity. The species diversity indices increased at the early stage of warming and decreased at the late stage of warming, but none of them reached significant levels (P>0.05). Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming. Soil temperature and aboveground biomass were positively correlated in the control plots (P=0.014), but negatively correlated under the long-term warming (P=0.013). Therefore, eight years of warming aggravated drought in the shallow soil layer, which is beneficial for the growth of weeds but not for the growth of grasses. Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity. Our studies have great significance for the protection and effective utilization of alpine vegetation, as well as for the prevention of grassland degradation or desertification in high-altitude regions.

  • Community structure and carbon and nitrogen storage of sagebrush desert under grazing exclusion in Northwest China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Overgrazing is regarded as one of the key factors of vegetation and soil degradation in the arid and semi-arid regions of Northwest China. Grazing exclusion (GE) is one of the most common pathways used to restore degraded grasslands and to improve their ecosystem services. Nevertheless, there are still significant controversies concerning GE's effects on grassland diversity as well as carbon (C) and nitrogen (N) storage. It remains poorly understood in the arid desert regions, whilst being essential for the sustainable use of grassland resources. To assess the effects of GE on community characteristics and C and N storage of desert plant community in the arid desert regions, we investigated the community structure and plant biomass, as well as C and N storage of plants and soil (0–100 cm depth) in short-term GE (three years) plots and adjacent long-term freely grazing (FG) plots in the areas of sagebrush desert in Northwest China, which are important both for spring-autumn seasonal pasture and for ecological conservation. Our findings indicated that GE was beneficial to the average height, coverage and aboveground biomass (including stems, leaves and inflorescences, and litter) of desert plant community, to the species richness and importance values of subshrubs and perennial herbs, and to the biomass C and N storage of aboveground parts (P<0.05). However, GE was not beneficial to the importance values of annual herbs, root/shoot ratio and total N concentration in the 0–5 and 5–10 cm soil layers (P<0.05). Additionally, the plant density, belowground biomass, and soil organic C concentration and C storage in the 0–100 cm soil layer could not be significantly changed by short-term GE (three years). The results suggest that, although GE was not beneficial for C sequestration in the sagebrush desert ecosystem, it is an effective strategy for improving productivity, diversity, and C and N storage of plants. As a result, GE can be used to rehabilitate degraded grasslands in the arid desert regions of Northwest China.

  • Relationship between ecological stoichiometry and plant community diversity in the upper reaches of Tarim River, northwestern China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Changes in ecological stoichiometry reflect nitrogen (N), phosphorus (P) and both N and P limitations in a plant community, which in turn affect plant diversity of the community. However, the relationship between plant community diversity and ecological stoichiometry has not yet been fully researched in arid and semi-arid regions. Ecological stoichiometry and plant community diversity indices of eighteen communities in the upper reaches of Tarim River, northwestern China, were analyzed by multivariate analysis of variance in 2016. The correlation between ecological stoichiometry and plant community diversity was assessed by redundancy analysis (RDA). Results indicated that the Margalef index was significantly correlated with carbon (C) and P concentrations, the Simpson index and Shannon–Weaner index were significantly correlated with plant C concentration, and the Pielou index was significantly correlated with plant C and N concentrations. Moreover, C:N and C:P ratios had significant impacts on plant community diversity. Our results highlight the importance of ecological stoichiometry in driving plant community diversity in the upper reaches of Tarim River, northwestern China.

  • Responses of plant community to the linkages in plant–soil C:N:P stoichiometry during secondary succession of abandoned farmlands, China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Succession is one of the central themes of ecology; however, the relationship between aboveground plant communities and underground soils during secondary succession remains unclear. In this study, we investigated the composition of plant community, plant–soil C:N:P stoichiometry and their relationships during secondary succession after the abandonment of farmlands for 0, 10, 20, 30, 40 and 50 a in China, 2016. Results showed that the composition of plant communities was most diverse in the farmlands after secondary succession for 20 and 50 a. Soil organic carbon and total nitrogen contents slightly decreased after secondary succession for 30 a, but both were significantly higher than those of control farmland (31.21%–139.10% and 24.24%–121.21%, respectively). Moreover, C:N ratios of soil and microbe greatly contributed to the changes in plant community composition during secondary succession of abandoned farmlands, explaining 35.70% of the total variation. Particularly, soil C:N ratio was significantly and positively related with the Shannon–Wiener index. This study provides the evidence of synchronous evolution between plant community and soil during secondary succession and C:N ratio is an important linkage between them.

  • Coupling between the Grain for Green Program and a household level-based agricultural eco-economic system in Ansai, Shaanxi Province of China

    分类: 地球科学 >> 地理学 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: The implementation of the Grain for Green Program (GGP) has changed the development track of the agricultural eco-economic system in China. In response to the results of a lag study that investigated the coupling between the GGP and the agricultural eco-economic system in a loess hilly region, we used a structural equation model to analyze the survey data from 494 households in Ansai, a district of Yan'an City in Shaanxi Province of China in 2015. The model clarified the direction and intensity of the coupling between the GGP and the agricultural eco-economic system. The coupling benefits were derived through linkages between the program and various chains in the agricultural eco-economic system. The GGP, the agroecosystem of Ansai and their potential coupling effects were in a state of general coordination. The agroecosystem directly affected the coupling effect, with the standardized path coefficient of 0.87, indicating that the agroecosystem in Ansai at this stage provided basic material support for the coupling between the GGP and the agricultural eco-economic system. The direct path coefficient of agroeconomic system impacted on the coupling effect was –0.76, indicating that partial contradictions occurred between the agroeconomic system and the coupling effect. Therefore, although the current agroecosystem in Ansai should be provided sufficient agroecological resources for the benign coupling between the program and the agricultural eco-economic system, agricultural development failed to effectively transform agroecological resources into agricultural economic advantages in this region, which resulted in a relative lag in the development of the agricultural economic system. Thus, the coupling between the GGP and the agricultural eco-economic system was poor. To improve the coupling and the sustainable development of the agricultural eco-economic system in cropland retirement areas, the industrial structure needs to be diversified, the agricultural resources (including agroecological resources, agricultural economic resources and agricultural social resources) need to be rationally allocated, and the chain structure of the agricultural eco-economic system needs to be continuously improved.

  • Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize

    分类: 地球科学 >> 水文学 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Soil surface mulching and planting density regulation are widely used for effective utilization of limited rainwater resources and improvement of crop productivity in dryland farming. However, the combined effects of mulching type and planting density on maize growth and yield have been seldom studied, especially in different hydrological years. A field experiment was conducted to evaluate the effects of mulching type and planting density on the soil temperature, growth, grain yield (GY), water use efficiency (WUE) and economic benefit of rainfed maize in the drylands of northern China during 2015–2017. Precipitation fluctuated over the three years. There were four mulching types (NM, flat cultivation with non-mulching; SM, flat cultivation with straw mulching; RP, plastic-mulched ridge plus bare furrow; RPFS, plastic-mulched ridge plus straw-mulched furrow) and three planting densities (LD, low planting density, 45.0×103 plants/hm2; MD, medium planting density, 67.5×103 plants/hm2; HD, high planting density, 90.0×103 plants/hm2). Results showed that soil temperature was higher with RP and lower with SM compared with NM, but no significant difference was found between RPFS and NM. More soil water was retained by soil mulching at the early growth stage, but it significantly varied at the middle and late growth stages. Maize growth was significantly improved by soil mulching. With increasing planting density, stem diameter, net photosynthetic rate and chlorophyll content tended to decline, whereas a single-peak trend in biomass yield was observed. Mulching type and planting density did not have significant effect on evapotranspiration (ET), but GY and WUE were significantly affected. There were significant interacting effects of mulching type and planting density on biomass yield, GY, ET and WUE. Compared with NM, RPFS, RP and SM increased GY by 57.5%, 50.8% and 18.9%, and increased WUE by 66.6%, 54.3% and 18.1%, respectively. At MD, GY increased by 41.4% and 25.2%, and WUE increased by 38.6% and 22.4% compared with those of at LD and HD. The highest maize GY (7023.2 kg/hm2) was observed under MD+RPFS, but the value (6699.1 kg/hm2) was insignificant under MD+RP. Similar trends were observed for WUE under MD+RP and MD+RPFS, but no significant difference was observed between these two combinations. In terms of economic benefit, net income under MD+RP was the highest with a 9.8% increase compared with that of under MD+RPFS. Therefore, we concluded that RP cultivation pattern with a suitable planting density (67.5×103 plants/hm2) is promising for rainwater resources utilization and maize production in the drylands of northern China.

  • 兰新高铁沿线县域可达性时空收敛 效应与经济潜力特征分析

    分类: 地球科学 >> 地理学 提交时间: 2020-06-12 合作期刊: 《干旱区地理》

    摘要: 运用加权平均旅行时间、等时圈、经济潜力和空间变差函数等方法和模型,综合分析了兰新高铁运营前后沿线县域可达性时空收敛效应和经济潜力特征变化。结果表明:兰新高铁开通运营后,(1)沿线91个县域单元加权平均旅行时间缩短33.46%,呈现“核心-边缘”结构,中小县域的可达性优化作用总体上强于核心城市。(2)高铁站点城市及中心城市可达性提升存在明显的“节点效应”和“廊道效应”。高铁站点及其附近地区的可达性收益最多,时空收敛在一定程度上服从地理距离衰减规律。(3)区域经济潜力整体呈均衡化发展,激发沿线城镇经济发展潜能,经济潜力演变等级性和层次性特征愈加显著。

  • 叶尔羌河流域土地生态脆弱性差异评价

    分类: 地球科学 >> 地理学 提交时间: 2020-06-12 合作期刊: 《干旱区地理》

    摘要: 综合评估叶尔羌河流域土地生态脆弱性,为流域重点治理、恢复绿洲生机提供决策依据和理论支持。本文以叶尔羌河流域作为研究区,获取2008—2018年各时期不同指标层数据,利用ArcGIS 10.5的栅格计算功能与自然间断分类法,综合计算研究区生态脆弱性指数,并将其划分为五种脆弱等级并表征其时空分布。研究结果表明:在空间分布上,研究区以微度、轻度脆弱区为主,面积占比分别为35.67%、33.63%,主要分布在叶尔羌河中下游冲积扇平原;中、重度脆弱区比重次之,分别占比为14.89%、12.93%,主要分布在叶尔羌河上游山地丘陵区;极度脆弱区面积占比最小,仅为2.89%,但面积亦有3 000平方公里,主要分布在叶尔羌河中下游人口密集区,对流域整体生态环境起着“木桶效应”。局部地区生态环境持续恶化,致使流域整体生态压力与生态“阈值”的平衡受到影响。在时间分布上,2008-2011年整体评价指数下降0.043 24,2010—2014年整体评价指数下降0.005 41,2014—2018年整体评价指数下降0.05686。虽然各时期土地生态脆弱指数不同程度降低,流域整体生态环境呈改善趋势,但中、重、极度脆弱区依旧分布广泛,亟需研究其分布规律,针对不同脆弱区提出具体调控对策。

  • 火干扰对内陆荒漠湿地芦苇群落特征的影响

    分类: 地球科学 >> 地理学 提交时间: 2020-06-12 合作期刊: 《干旱区地理》

    摘要: 本研究采用人为起火的方法,通过对比敦煌西湖荒漠湿地干扰区域和未干扰区域火后第一年芦苇群落特征的变化,探讨内陆荒漠湿地植被对火干扰的响应机制。了解火干扰对内陆荒漠湿地芦苇群落特征的影响。结果表明: 火干扰能够延长植物青绿期,促进了植被的个体发育;火干扰对草本层植被盖度、高度均有显著的负面影响,而对密度有显著的正面影响,对灌木层植被群落盖度、高度及密度均有正面影响,但影响不明显;火干扰后植物群落Shannon-Wiener多样性指数H′、Simpson多样性指数D和Simpson优势度指数C均减少,而Margalef物种丰富度指数Ma和Pielou均匀度指数J均增加;火干扰致使草本层植物群落多样性指数与研究区植物群落总体多样性指数变化趋势一致,致使灌木层物种H′、D和J指数均减少,而Ma和C指数均增加;火干扰致使植物群落地上总的生物量降低,主要使灌木层生物量降低,而使草本层生物量有所增加。

  • 关中平原典型村落农业转型对生态系统服务的影响研究

    分类: 地球科学 >> 地理学 提交时间: 2020-06-12 合作期刊: 《干旱区地理》

    摘要: 全球化和城市化驱动农产品市场需求的日益增长正在推动农村和农业的转变与重构,深刻影响着农村经济、社会和生态发展之间的关系。以关中平原典型村落—余家营和马家村为例,研究城市化影响下农业转型对农业生态系统服务产生了何种影响,对探索城乡互动机制、乡村特色农业发展以及生态景观建设等具有重要意义。本文通过问卷调查,半结构式访谈、野外填图等对余家营村和马家村的土地利用变化及农业生态系统服务进行测评,分析了关中平原农业转型变化及其对农业生态系统服务的影响与机制。结果表明:(1)“粮—粮”和“粮—果”转型使农业景观、种植结构、农户行为等都发生较大变化,在由传统粮食生产向水果、蔬菜、苗木花卉等现代型农业转变过程中,作物品种由低产量、低品质转为高产量、高品质,并更趋多样化;出现少许耕地转变为草地和林地的现象;农户积极性提高,科技水平有所提升。(2)“粮—粮”和“粮—果”转型使经济生产功能、净化服务、调节服务增加,固碳释氧减少;水资源消耗、农业塑料污染、化肥农药污染等负服务明显增加;两种转型均以生态系统的正供给服务为主,其中“粮—果”经济生产功能增长较大,增长了523.9%。(3)农业转型主要受到城市化、国家政策的驱动,并通过影响农田的农业景观、农业结构、农户行为进而影响农业生态系统服务功能,反之,农业生态系统服务变化也会影响到国家政策以及农户行为。

  • 配重浮球覆盖下干旱区平原水库节水率研究

    分类: 地球科学 >> 水文学 提交时间: 2020-06-12 合作期刊: 《干旱区地理》

    摘要: 干旱区平原水库具有水面积大、蒸发强烈等特点,本文采用直径100 mm的配重浮球来抑制平原水库的无效蒸发。以月为时间尺度,分别从浮球间孔隙造成的蒸发损失率和风浪环境中配重浮球湿润表面造成的蒸发损失率进行研究,最终建立浮球覆盖下水面蒸发抑制率和节水率计算模型。结果表明:(1)非冰冻期内,浮球间孔隙造成的蒸发损失率呈现先增大后减小,在7月达到全年最高值11.6%;冰冻期内(12月和1月),浮球间孔隙造成的蒸发损失率达到全年最低值9%。(2)相同覆盖面积下,浮球润湿率随风速的增大呈曲线增长,且覆盖面积越大,润湿率随风速的变化速率越慢。相同风速下,浮球润湿率随覆盖面积的增大呈直线下降。各覆盖面积下,单位面积节水率在7月达到最大值,分别为76.6%、78.1%、79.6%、81.2%;在4月达到最低值,分别为51.9%、54.0%、58.2%、61.3%。综上所述,配重浮球在风浪环境中稳定性好、防蒸发节水率高,是一种较为理想的防蒸发材料。