• A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains

    分类: 地球科学 >> 大气科学 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Climate warming profoundly affects hydrological changes, agricultural production, and human society. Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting. The Chinese Tianshan Mountains (CTM) have a high climate sensitivity, rendering the region particularly vulnerable to the effects of climate warming. In this study, we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset (1961–2014) and 24 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale. Based on this, we conducted a systematic review of the interannual trends, dry–wet transitions (based on the standardized precipitation index (SPI)), and spatial distribution patterns of climate change in the CTM during 1961–2014. We further projected future temperature and precipitation changes over three terms (near-term (2021–2040), mid-term (2041–2060), and long-term (2081–2100)) relative to the historical period (1961–2014) under four shared socio-economic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It was found that the CTM had experienced significant warming and wetting from 1961 to 2014, and will also experience warming in the future (2021–2100). Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble (MME) from the CMIP6 GCMs. The MME simulation results indicated an apparent wetting in 2008, which occurred later than the wetting observed from the CN05.1 in 1989. The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM. Warming and wetting are more rapid in the northern part of the CTM. By the end of the 21st century, all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry–wet transitions. However, the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future, so the nature of the drought in the CTM will not change at all. Additionally, the projected summer precipitation shows negative correlation with the radiative forcing. This study holds practical implications for the awareness of climate change and subsequent research in the CTM.

  • A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains

    分类: 地球科学 >> 大气科学 提交时间: 2024-02-07 合作期刊: 《干旱区科学》

    摘要: Climate warming profoundly affects hydrological changes, agricultural production, and human society. Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting. The Chinese Tianshan Mountains (CTM) have a high climate sensitivity, rendering the region particularly vulnerable to the effects of climate warming. In this study, we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset (19612014) and 24 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale. Based on this, we conducted a systematic review of the interannual trends, drywet transitions (based on the standardized precipitation index (SPI)), and spatial distribution patterns of climate change in the CTM during 19612014. We further projected future temperature and precipitation changes over three terms (near-term (20212040), mid-term (20412060), and long-term (20812100)) relative to the historical period (19612014) under four shared socio-economic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It was found that the CTM had experienced significant warming and wetting from 1961 to 2014, and will also experience warming in the future (20212100). Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble (MME) from the CMIP6 GCMs. The MME simulation results indicated an apparent wetting in 2008, which occurred later than the wetting observed from the CN05.1 in 1989. The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM. Warming and wetting are more rapid in the northern part of the CTM. By the end of the 21st century, all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple drywet transitions. However, the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future, so the nature of the drought in the CTM will not change at all. Additionally, the projected summer precipitation shows negative correlation with the radiative forcing. This study holds practical implications for the awareness of climate change and subsequent research in the CTM.

  • Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: Short-term climate reconstruction, i.e., the reproduction of short-term (several decades) historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area, can extend the length of climatic time series and offset the shortage of observations. This can be used to assess regional climate change over a much longer time scale. Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5 (CMIP5) dataset for the period of 1850–2000, the Climatic Research Unit (CRU) dataset for the period of 1901–2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region (TMR) of China during the period of 1961–2011, we calibrated and validated monthly average temperature (MAT) and monthly accumulated precipitation (MAP) in the TMR using the delta, physical scaling (SP) and artificial neural network (ANN) methods. Performance and uncertainty during the calibration (1971–1999) and verification (1961–1970) periods were assessed and compared using traditional performance indices and a revised set pair analysis (RSPA) method. The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables, different data sources, and/or different methods used. According to traditional performance indices, both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961–1999. However, the results differed from those obtained by the RSPA method. This showed that the CRU dataset produced a low degree of uncertainty (positive connection degree) during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset. Overall, the calibrated and verified MAP had a high degree of uncertainty (negative connection degree) regardless of the dataset or reconstruction method used. Therefore, the reconstructed time series of MAT for the period of 1850 (or 1901)–1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study. The results of this study will be useful for short-term (several decades) regional climate reconstruction and longer-term (100 a or more) assessments of regional climate change.