按提交时间
按主题分类
按作者
按机构
您选择的条件: 2022-05-09
  • Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China

    分类: 地球科学 >> 地理学 提交时间: 2022-05-09 合作期刊: 《干旱区科学》

    摘要: Abstract: Glaciers are known as natural ''solid reservoirs'', and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 19802020. The results indicate that the mass loss and the equilibrium line altitude (ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being 0.85 (0.32) m w.e./a (meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 19992020, mostly due to the increase in temperature and the extension of ablation season. During 19802011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48108 m3, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas.

  • Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China

    分类: 地球科学 >> 水文学 提交时间: 2022-05-09 合作期刊: 《干旱区科学》

    摘要: Abstract: With realizing the importance of ecosystem services to society, the efforts to evaluate the ecosystem services have increased. As the largest tributary of the Yellow River, the Weihe River has been endowed with many ecological service functions. Among which, water yield can be a measure of local availability of water and an index for evaluating the conservation function of the region. This study aimed to explore the temporal and spatial variation of water yield and its influencing factors in the Weihe River Basin (WRB), and provide basis for formulating reasonable water resources utilization schemes. Based on the InVEST (integrated valuation of ecosystem services and tradeoffs) model, this study simulated the water yield in the WRB from 1985 to 2019, and discussed the impacts of climatic factors and land use change on water yield by spatial autocorrelation analysis and scenario analysis methods. The results showed that there was a slight increasing trend in water yield in the WRB over the study period with the increasing rate of 4.84 mm/10a and an average depth of 83.14 mm. The main water-producing areas were concentrated along the mainstream of the Weihe River and in the southern basin. Changes in water yield were comprehensively affected by climate and underlying surface factors. Precipitation was the main factor affecting water yield, which was consistent with water yield in time. And there existed significant spatial agglomeration between water yield and precipitation. Land use had little impact on the amount of water yield, but had an impact on its spatial distribution. Water yield was higher in areas with wide distribution of construction land and grassland. Water yield of different land use types were different. Unused land showed the largest water yield capacity, whereas grassland and farmland contributed most to the total water yield. The increasing water yield in the basin indicates an enhanced water supply service function of the ecosystem. These results are of great significance to the water resources management of the WRB.

  • Study of the intensity and driving factors of land use/cover change in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River region, Qinghai-Tibet Plateau of China

    分类: 地球科学 >> 地理学 提交时间: 2022-05-09 合作期刊: 《干旱区科学》

    摘要: Abstract: Land use/land cover (LULC) is an important part of exploring the interaction between natural environment and human activities and achieving regional sustainable development. Based on the data of LULC types (cropland, forest land, grassland, built-up land, and unused land) from 1990 to 2015, we analysed the intensity and driving factors of land use/cover change (LUCC) in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region, Qinghai-Tibet Plateau of China, using intensity analysis method, cross-linking table method, and spatial econometric model. The results showed that LUCC in the YNL region was nonstationary from 1990 to 2015, showing a change pattern with fast-slow-fast and U-shaped. Built-up land showed a steady increase pattern, while cropland showed a steady decrease pattern. The gain of built-up land mainly came from the loss of cropland. The transition pattern of LUCC in the YNL region was relatively single and stable during 19902015. The transition pattern from cropland and forest land to built-up land was a systematic change process of tendency and the transition pattern from grassland and unused land to cropland was a systematic change process of avoidance. The transition process of LUCC was the result of the combined effect of natural environment and social economic development in the YNL region. This study reveals the impact of ecological environment problems caused by human activities on the land resource system and provides scientific support for the study of ecological environment change and sustainable development of the Qinghai-Tibet Plateau.

  • Scenario simulation of water retention services under land use/cover and climate changes: a case study of the Loess Plateau, China

    分类: 地球科学 >> 水文学 提交时间: 2022-05-09 合作期刊: 《干旱区科学》

    摘要: Abstract: Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore, integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change (LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period (20002015) and in the future (20202050). An improved Markov-Cellular Automata (Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios (historical scenario (HS), ecological protection scenario (EPS), and urban expansion scenario (UES)) and two climate change scenarios (RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period (20002015) and in the future (20202050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63103 km2/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20106 mm and water retention increased by 0.09106 mm in the historical period (20002015), especially in the Interior drainage zone and its surrounding areas. In the future (20202050), the pixel means of water yield is higher under RCP4.5 scenario (96.63 mm) than under RCP8.5 scenario (95.46 mm), and the pixel means of water retention is higher under RCP4.5 scenario (1.95 mm) than under RCP8.5 scenario (1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27106 mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios.