您选择的条件: Wang, Ling-Hua
  • Numerical simulation of superhalo electrons generated by magnetic reconnection in the solar wind source region

    分类: 地球科学 >> 空间物理学 提交时间: 2016-05-13

    摘要: Superhalo electrons appear to be continuously present in the interplanetary medium, even during very quiet times, with a power-law spectrum at energies above similar to 2 keV. Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, using magnetohydrodynamics and test particle simulations for both single X-line reconnection and multiple X-line reconnection. We find that the direct current electric field, produced in the magnetic reconnection region, can accelerate electrons from an initial thermal energy of T similar to 10(5) K up to hundreds of keV. After acceleration, some of the accelerated electrons, together with the nascent solar wind flow driven by the reconnection, propagate upwards along the newly-opened magnetic field lines into interplanetary space, while the rest move downwards into the lower atmosphere. Similar to the observed superhalo electrons at 1 AU, the flux of upward-traveling accelerated electrons versus energy displays a power-law distribution at similar to 2 - 100 keV, f (E) similar to E-delta, with a delta of similar to 1.5 - 2.4. For single (multiple) X-line reconnection, the spectrum becomes harder (softer) as the anomalous resistivity parameter alpha (uniform resistivity eta) increases. These modeling results suggest that the acceleration in the solar wind source region may contribute to superhalo electrons.