Your conditions: 赵正予
  • 日全食期间武汉钠层和电离层联合观测结果

    Subjects: Geosciences >> Space Physics submitted time 2016-05-13

    Abstract:利用全天时钠层荧光激光雷达和GPS电离层探测仪, 在2009年7月22日武汉日全食期间, 开展钠层与电离层的联合观测试验. 观测结果表明, 钠层密度半高全宽在日全食过程中稍有变窄, 而日全食过后增宽, 钠层峰值高度在日全食过程中稍有降低, 日全食过后高度略增, 钠层变化特性表现出快速的日出日落过程. 电离层电子总含量和天空背景光噪声也随日全食期间太阳辐照的变化而呈现出明显下降和上升的波动特征. 所不同的是, 钠层原子的这种半宽度起伏变化要比电离层的变化迟缓得多, 这可能是由于钠层受到日全食辐照扰动后, 会产生一系列复杂的光化学反应及动力输运过程, 再复合成钠原子被激光雷达探测到, 有一个滞后过程, 这也正好与理论模拟的结果相符.

  • 非相干雷达探测低电离层的结果分析

    Subjects: Geosciences >> Space Physics submitted time 2016-05-13

    Abstract: The D and E regions lie in the lower ionosphere region of 60~110 km height. This region is influenced by solar radiation, cosmic noise radiation, atmospheric electrodynamics and many factors, and there exists a variety of incredible variation characteristics. Even in the magnetically quiet day, atmospheric electrodynamics can make a significant effect on this region except solar radiation. In the D region, there exists radio waves strong absorption, which can influence the transmission of high frequency radio waves. Electron and ion density can be obtained from the Incoherent Scatter Radar (ISR) Arecibo, located at Puerto Rico. ISR data can be used to study the movement characteristics of the lower ionosphere in mid-latitude, and get the electron density curves changing with time and height, which present obvious diurnal changing phenomenon. The spectrum of the data is analyzed to probe diurnal effects of electron density changes. Besides the electron density height profiles have been drawn, and observe obvious plasma descending from the base of F-layer to E region. The layer structure characteristics of the lower ionosphere and electron density changing show that there exists different degree of disturbance. By analyzing the influencing factors it is concluded that the atmospheric tides and the acoustic gravity waves can cause disturbance to lower ionosphere, which is coupled with the atmosphere in certain degree.

  • 第23太阳活动周期太阳风参数及地磁指数的统计分析

    Subjects: Geosciences >> Space Physics submitted time 2016-05-04

    Abstract: Coronal mass ejections (CMEs) and corotating interaction regions (CIRs) are two significant contributors to interplanetary disturbances and geomagnetic disturbances, which also play as major drivers of geomagnetic storms to modulate the geo-space environment. In order to comprehensively investigate the characteristic temporal features of the solar wind activity and associated geomagnetic activity, a large amount of solar wind data and geomagnetic activity indices are analyzed in detail. Firstly, using the public data of solar wind parameters and geomagnetic activity indices provided by the NASA OMNIWeb, the MATLAB codes are developed to deal with a number of key parameters including IMF B-z solar wind velocity, solar wind proton density, solar wind dynamic pressure, Dst, AE, and Kp for the entire Solar Cycle 23 from 1996 to 2008. The complete database with a full list of 269 CME events and 456 CIR events is identified. Case event studies and superposed epoch analyses are implemented to carefully investigate the statistical features of four important solar wind parameters (IMF 13,, solar wind speed, solar wind proton density, and solar wind dynamic pressure) and three major geomagnetic indices (Dst, AE, and Kp) associated with the two types of solar disturbances. Secondly, the minimum of Dst index is utilized to differentiate 355 isolated geomagnetic storms occurring during the Solar Cycle 23. These storms are further categorized according to the magnitude of Dst minimum into 145 weak storms, 123 moderate storms, 70 strong storms, 12 severe storms, and 5 extreme storms. Finally, superposed epoch analysis is applied to evaluate the statistics of solar wind parameters and geomagnetic indices corresponding to magnetic storms with different intensities. It is found that in general the linearly fitted slope of N-sw/P-dyn (where N-sw is the solar wind proton density and P-dyn the dynamic pressure) with respect to epoch time remains positive for CME events but negative for CIR events, which can act as a feasible means to distinguish CME and CIR events. On average, compared to CIR events, CME events have larger magnitudes of southward IMF B solar wind dynamic pressure, AE and Kp indices but smaller Dst(min). In principle, CMEs bear higher possibility to drive extremely intense (i. e., super) geomagnetic storms. The overall variations of Dst tend to be similar to some extent for different levels of geomagnetic storms, however, Dst decreases faster for stronger storms. There are a large number of differences between CME and CIR events and their driven geomagnetic storms as well. Therefore, CME-driven storms and CIR-driven storms should be studied separately. The established database of CME and CIR events and geomagnetic storms and the quantitative statistical information in combination can provide a useful aid for better understanding the responses of Earth's plasma sheet, radiation belts, and ring current to various solar activities.