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ABSTRACT 

 

Dual-Frequency Polarized Scatterometer (DFPSCAT) is a 

pencil-beam rotating scatterometer which is used to measure 

snow water equivalence (SWE). Respecting the low azimuth 

resolution of its forward-looking region, an adaptive 

regularization deconvolution super-resolution method, based 

on the scatterometer echo signal model, is proposed. 

Compared with the classical SIR and MAP algorithms, the 

proposed method can better reconstruct the original signal, 

and has less noise amplification. The algorithm processing 

accuracy with different Kpc is also studied, and the results 

show that when the value of Kpc is less than 0.1, nearly the 

entire restored data can satisfy the requirement of 0.5dB 

accuracy. 

 

Index Terms—DFPSCAT, azimuth super-resolution, 

adaptive regularization method, accuracy 

 

1. INTRODUCTION 

 

The radar scatterometer has been widely used in ocean 

surface wind vector measurement, with surface resolution of 

tens of kilometers, usually 20-50km. Super-resolution 

techniques have been used to enhance the resolution of radar 

scatterometric data for some specific applications such as 

iceberg tracking, where the radiometric precision is not the 

essential requirement. Recently, the Water Cycle 

Observation Mission (WCOM) is proposed to improve the 

capability of synergetic observation of key water cycle 

parameters [1]. DFPSCAT is one of three payloads proposed 

for WCOM along with other two payloads, the Full 

Polarization Interferometric Radiometer (FPIR) and the 

Polarimetric Microwave Imager (PMI). DFPSCAT is mainly 

used to retrieve the SWE by simultaneous measurement of 

both surface and volume scattering from snow coverage [2, 

3]. According to requirement of the retrieval, the surface 

resolution of normalized radar backscatter coefficient 

(sigma0) measured by DFPSCAT should be about 

approximate 2km, and with high radiometric precision. 

Subjected to restriction of scanning coverage and rotation 

speed, the beamwidth and antenna dimension of DFPSCAT 

are about 1 and 1.5m, respectively. To achieve the desired 

spatial resolution, pulse compression is adopted along the 

elevation direction; while along the azimuth direction, 

Doppler Beam Sharpening (DBS) can be used at side-

looking region within the swath. 

For the forward-looking region, the azimuth resolution 

is still limited by its antenna beamwidth. Plenty of super-

resolution methods, including wiener filtering, iterative 

deconvolution, generalized inverse filtering and MAP 

methods, have been investigated to settle this issue. 

However, these methods have the disadvantage of declining 

capability and low efficiency especially at low SNR. 

Considering the characteristics of scatterometer signal, a 

suitable choice is the regularization method. 

The paper first establishes DFPSCAT echo signal 

model, and then details the adaptive regularization method 

to enhance the azimuth resolution. Two simulations are 

carried out to evaluate the algorithm performance. The 

results show that the proposed method has better 

performance. 

 

2. DFPSCAT ECHO SIGNAL MODEL 

 

DFPSCAT is a pencil-beam rotating scatterometer, whose 

observation geometry is shown in Fig. 1. Assuming the 

transmit signal is a rectangular pulse signal, the echo signal 

after pulse compression can be expressed as 
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 where R is the slant range,  is the azimuth angle, RC  

indicates the radar system constant, 0  is the target 

backscatter coefficient, h  represents antenna pattern,   is 

the electromagnetic wave length, c=3108 m/s,   is phase 
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factor of the transmit signal, n is the receiver thermal noise, 
  represents convolution. 

 

 

Fig. 1 The observation geometry of DFPSCAT 

For the same slant range R=R0, Eq. (1) can be 

simplified as 
0( ) ( ) ( )y h n     

                        
 (2) 

For the scatterometer case, the observed data is one 

section of the above continuous convolution process, which 

is a partial convolution. The actual sampling operation can 

be written as  
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where y is the vector of samples of the continuous signal y of 

Eq. (2), N is its total number of samples, and M is the 

sampling number of h.  

Noted that Eq. (3) does not have definite solution 

because the number of unknown 0  is greater than the 

number of equations. To settle the problem, one approach is 

to utilize a circulant matrix model; the other is to modify the 

partial convolution into a complete convolution, namely 

aperiodic matrix model. These two approaches will achieve 

similar results as long as M is much smaller than N [4]. To 

facilitate calculation, we choose the approximate circulant 

matrix model, i.e.  
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(4) 

which can be expressed as a matrix-vector form  

 

0 +y H n 
                                   

(5) 

where y , 0 and n have the same dimension of N1, H 

represents a NN circulant matrix. 

 

3. ADAPTIVE REGULARIZATION METHOD 

 

3.1. Tikhonov regularization method 

 

Due to the ill-poseness of Eq. (5), Tikhonov put forward the 

regularization method by introducing a regularization 

operator to make the equation solutions continuously depend 

on observed data. Tikhonov regularization algorithm is 

equivalent to minimize the following expression                                                    
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where  is the regularization parameter which plays a key 

role to solve the problem. There are two criteria to make an 

optimal selection of  : prior and posterior criteria. The 

priori one depends mainly on experience, but it is often 

infeasible especially for some actual problems. Therefore, 

Morozov method, a commonly used posteriori criterion, is 

chosen to determine  . 

Calculating Eq. (6) is equivalent to solve the following 

linear equation 

  0 T T
H H I H y

                    
(7)  

 

3.2. Adaptive regularization method 

 

The adaptive regularization method was first proposed by 

Ryzhikov and Biryulina in 1998 to solve inverse problem of 

linear equations [5]. We apply the method to achieve super-

resolution of the scatterometer in the azimuth direction. 

With the prerequisite that T
H H  is reversible, the specific 

form of the algorithm is 

 2 0( )  T T T
H H I H H H y

            
(8)  

Let T
s H y , T H H , then the Eqs. (5), (7), (8) 

can be expressed as  
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Comparing the above formulae, it is not difficult to find 

that when 0  , A

R
 
and T

R
 
are approximate to R , 

while when η  contains zero eigenvalue, 0R , A

 R
 

and 1T

  R .The results show that Eq. (11) can better 

approximate to the original Eq. (9). Therefore, the optimal 

approximation solution of the echo model can be obtained 

by using the adaptive regularization method. 
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4. ALGORITHM PERFORMANCE 

 

To evaluate the algorithm performance, one-dimensional (1-

D) signal reconstruction simulation is first conducted. 

Furthermore, a quantitative analysis of the processing 

accuracy of the algorithms is carried out. 

In 1-D signal reconstruction simulation, the test signal 

is a narrow sinc function with a bandlimited spectrum, while 

the antenna function is a wide rect function whose frequency 

response attenuated the high frequency components of the 

signal spectrum, as shown in Fig. 2. The antenna beamwidth 

is set as 1.08°. The azimuth super resolution region is ±10° 

off nadir. The test signal is sampled per 0.14°.  

 

 
(a) 

 
(b) 

Fig. 2 (a) Test signal and antenna pattern used in the 

simulation. (b) Schematic illustration (vertical scale is 

compressed for clarity) of spectrum of the test signal and 

antenna pattern. 

The reconstructed signal and its corresponding 

spectrum are investigated to evaluate the Tikhonov 

regularization (TR) and Adaptive regularization (AR) 

algorithms performance. To further verify the deconvolution 

methods, they are also compared with classical SIR and 

MAP algorithms. In addition, both noise-free and noisy 

measurements are studied in the paper. The noisy 

measurements satisfy the following relationship 

pc(1 (0,1))noisy noise- freeK N y y
              

(12) 

where N(0,1) is a zero mean unit variance Gaussian random 

variable, Kpc represents measurement error. 

Figure 3 compares the reconstructed signals and the 

spectrum without noise. It is obvious that the four algorithms 

are able to provide good reconstruction of the original signal, 

as illustrated in Fig. 3(a). From Fig. 3(b), we note that the 

SIR and MAP methods cannot recover the lost spectrum 

information caused by the nulls of antenna pattern spectrum, 

while both TR and AR algorithms could completely restore 

the original spectrum. 

 
(a) 

 
(b) 

Fig. 3 Algorithm Performance comparison for noiseless 

measurements (a) Reconstructed signals (b) Spectrum of the 

reconstructed signals  

To evaluate the performance with consideration of noise, 

Fig. 4 demonstrates the output of resolution enhancement 

methods and their spectrum. Kpc is set as 0.01. There are two 

significant observations from these results: First, MAP and 

AR algorithms could reconstruct the original signal with less 

bias compared with SIR and TR algorithms. Second, the 

spectrum of AR algorithm has less noise amplification than 

MAP, SIR and TR.  
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(a) 

 
(b) 

Fig. 4 Algorithm Performance comparison for noisy 

measurements (a) Reconstructed signals (b) Spectrum of the 

reconstructed signals 

Based on the above 1-D signal reconstruction 

simulation, a conclusion is drawn that the AR method has 

best reconstruction performance among these four 

algorithms. The paper will quantitatively analyze the 

processing accuracy of these algorithms to verify their 

validation when conducting SWE retrieval. To satisfy the 

requirement of SWE retrieval, sigma0 accuracy need to be 

better than 0.5dB [6]. Assuming the actual backscatter 

coefficient continuously varies with the azimuth super 

resolution region, we will calculate the percentage of 

reconstructed sigma0 whose accuracy is better than 0.5dB, 

and take it as an index to evaluate algorithm performance.  

Figure 5 shows the algorithm processing accuracy with 

Kpc varies from 0.05 to 0.15. It is noted that the 

reconstructed sigma0 after AR method processing has higher 

accuracy than the others for the same Kpc. Additionally, 

compared with SIR, MAP and TR algorithms, the processing 

accuracy of the AR algorithm degrades more slowly with 

increased Kpc. When the value of Kpc is less than 0.1, nearly 

the entire restored data satisfy the accuracy requirement.  

 

Fig. 5 Algorithm processing accuracy with varied Kpc 

 

5. CONCLUSION 

 

The paper introduces the regularization method to enhance 

azimuth resolution and successfully applies it to the 

DFPSCAT forward looking case. Tikhonov and adaptive 

regularization methods are described and compared by 

theoretical analysis, which shows that both of them can be 

used in azimuth super resolution of DFPSCAT, whereas the 

proposed adaptive regularization method adapts noise better 

and has better performance. Compared with classical SIR 

and MAP algorithms, simulation results turn out that the 

proposed method has higher accuracy, and almost the entire 

restored data accuracy are better than 0.5dB when Kpc is less 

than 0.1. 
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