• Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China

    分类: 地球科学 >> 地理学 提交时间: 2023-07-17 合作期刊: 《干旱区科学》

    摘要:Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30 (where TDP is the thermal dissipation probe) to measure hourly and daily variations in the stem sap flow velocity of H. ammodendron at three age-classes (10, 15, and 20 years old, which were denoted as H10, H15, and H20, respectively) in the Minqin oasis-desert transition zone, China, from May through October 2020. By simultaneously monitoring temperature, relative humidity, photosynthetically active radiation, wind speed, net radiation, rainfall, and soil moisture in this region, we comprehensively investigated the stem sap flow velocity of different-aged H. ammodendron plants (H10, H15, and H20) and revealed its response to physical factors. The results showed that, on sunny days, the hourly variation curves of the stem sap flow velocity of H. ammodendron plants at the three age-classes were mainly unimodal. In addition, the stem sap flow velocity of H. ammodendron plants decreased significantly from September to October, which also delayed its peak time of hourly variation. On rainy days, the stem sap flow velocity of H. ammodendron plants was multimodal and significantly lower than that on sunny days. Average daily water consumption of H. ammodendron plants at H10, H15, and H20 was 1.98, 2.82, and 1.91 kg/d, respectively. Temperature was the key factor affecting the stem sap flow velocity of H. ammodendron at all age-classes. Net radiation was the critical factor influencing the stem sap flow velocity of H. ammodendron at H10 and H15; however, for that at H20, it was vapor pressure deficit. The stem sap flow velocity of H. ammodendron was highly significantly correlated with soil moisture at the soil depths of 50 and 100 cm, and the correlation was strengthened with increasing stand age. Altogether, our results revealed the dynamic changes of the stem sap flow velocity in different-aged H. ammodendron forest stands and its response mechanism to local physical factors, which provided a theoretical basis for the construction of new protective forests as well as the restoration and protection of existing ones in this region and other similar arid regions in the world.