按提交时间
按主题分类
按作者
按机构
  • Biocrust-induced partitioning of soil water between grass and shrub in a desert steppe of Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2023-02-07 合作期刊: 《干旱区科学》

    摘要: Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China. We investigated two kinds of shrublands with different BSCs (biological soil crusts) cover in desert steppe in Northwest China to characterize the water sources of shrub (Caragana intermedia Kuang et H. C. Fu) and grass (Artemisia scoparia Waldst. et Kit.) by stable 18O isotopic. Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017, the minimum soil depth with CV (coefficient of variation) C. intermedia, a considerable proportion of water sources pointed to the surface soil. Water from BSCs contributed to averages 22.9% and 17.6% of the total for C. intermedia and A. scoparia, respectively. C. intermedia might use more water from BSCs in rainy season than dry season, in contrast to A. scoparia. The relationship between shrub (or grass) and soil water by 18O shown significant differences in months, which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale. More fine roots at 05 cm soil layer could be found in the surface soil layer covered by BSCs (8000 cm/m3) than without BSCs (3200 cm/m3), which ensured the possibility of using the surface soil water by C. intermedia. The result implies that even under serious soil water deficiency, C. intermedia can use the surface soil water, leading to the coexistence between C. intermedia and A. scoparia. Different with the result from BSCs in desert areas, the natural withdrawal of artificial C. intermedia from desert steppe will be a long-term process, and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time.

  • Adjustment of precipitation measurements using Total Rain weighing Sensor (TRwS) gauges in the cryospheric hydrometeorology observation (CHOICE) system of the Qilian Mountains, Northwest China

    分类: 地球科学 >> 水文学 提交时间: 2022-03-24 合作期刊: 《干旱区科学》

    摘要: Abstract: Precipitation is one of the most important indicators of climate data, but there are many errors in precipitation measurements due to the influence of climatic conditions, especially those of solid precipitation in alpine mountains and at high latitude areas. The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation. To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains, we established a cryospheric hydrometeorology observation (CHOICE) system in 2008 in the Qilian Mountains, which consists of six automated observation stations located between 2960 and 4800 m a.s.l. Total Rain weighing Sensor (TRwS) gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment (WMO-SPICE) were used at observation stations with the CHOICE system. To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges, we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system. Moreover, we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station. The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system. Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters. The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions. Thus, root-mean-square error (RMSE) of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135 (353%) and 0.072 mm (111%), respectively. RMSE values of liquid, solid and mixed precipitation measurements corrected by the new parameters decreased by 6%, 20% and 13%, respectively. In addition, the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system. The relative precipitation (RP) increment of different types of precipitation increased with rising altitude. The average RP increment value of snowfall at six stations was the highest, reaching 7%, while that of rainfall was the lowest, covering 3%. Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.

  • Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants

    分类: 地球科学 >> 地理学 提交时间: 2021-12-03 合作期刊: 《干旱区科学》

    摘要: The purpose of the current study was to investigate the eco-physiological responses, in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica (Bunge) Freitag and Schütze under elevated CO2. A climatic chamber experiment was conducted to examine the effects of ambient (720 μg/L) and CO2-enriched (1440 μg/L) treatments on these responses in S. aralocaspica at vegetative and reproductive stages in 2012. Result showed that elevated CO2 significantly increased shoot dry weight, but decreased N:P ratio at both growth stages. Plants grown from dimorphic seeds did not exhibit significant differences in growth and C:N:P stoichiometric characteristics. The transition from vegetation to reproductive stage significantly increased shoot:root ratio, N and P contents, but decreased C:N, C:P and N:P ratios, and did not affect shoot dry weight. Moreover, our results indicate that the changes in N:P and C:N ratios between ambient and elevated CO2 are mainly caused by the decrease of N content under elevated CO2. These results provide an insight into nutritional metabolism of single-cell C4 plants under climate change.

  • Estimating the Sea State Bias of Jason-2 Altimeter From Crossover Differences by Using a Three-Dimensional Nonparametric Model

    分类: 地球科学 >> 空间物理学 提交时间: 2017-03-10

    摘要: With a standard deviation as large as 2 cm, the sea state bias (SSB) has become the dominant source of error in satellite altimetry. The operational SSB correction models are two-dimensional (2-D) empirical (parametric or nonparametric) models based on the altimeter-measured wind speed (U) and significant wave height (SWH). However, these 2-D SSB models cannot entirely parameterize the range bias variability. The SSB uncertainty may be lowered through improved SSB models including additional measurable or predictable correlatives. This paper presents a method to estimate the SSB from crossover differences by using a three-dimensional (3-D) nonparametric model. The model is based on U, SWH from Jason-2 altimeter ocean observations, and the mean wave period from the European Centre for Medium-Range Weather Forecasts reanalysis project ERA-Interim (The SSB model developed with the method presented in this paper is called “3-D SSB model” and the SSB estimated with the 3-D SSB model is called “3-D SSB estimate”). Simulations indicate that the wave period can greatly affect the SSB. Evaluated by the separate annual datasets from 2009 to 2011, the 3-D SSB estimates can increase the explained variance by 1.32 cm2, or 1.15-cm RMS relative to the traditional 2-D SSB estimates based on U and SWH. Spatial evaluation of improvement shows that the 3-D SSB estimates are better than the traditional 2-D SSB estimates at all latitudes. The enhancement from 2-D to 3-D SSB estimates is of great significance to improve the precision of the altimeter product.[COMP]: Please set math TYPE gin the sentence below (40) as per the authors PDF.

  • Estimating the sea state bias of HY-2A radar altimeter by using a three-dimentional nonparametric model

    分类: 地球科学 >> 空间物理学 提交时间: 2017-03-10

    摘要: The sea state bias (SSB) has become the dominant source of error in satellite altimetry. The operational SSB correction models are two-dimensional (2-D) nonparametric models based on the wind speed (U) and the significant wave height (SWH) that can be directly measured by the altimeters. This paper estimates the sea state bias of HY-2A radar altimeter using a three-dimensional (3-D) nonparametric model based on SWH from HY-2A interim geophysical dataset records (IGDR), U and the mean wave period (MWP) from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis project ERA-Interim. The 3-D SSB estimates can increase the explained variance by 1.72 cm2, or 1.31 cm RMS relative to the traditional 2-D SSB estimates based on U and SWH. �2016 IEEE.

  • THE ALTIMETER PRECISION COMPARISON BETWEEN SAR MODE AND CONVENTIONAL MODE THROUGH AIRBORNE EXPERIMENT

    分类: 地球科学 >> 空间物理学 提交时间: 2016-05-03

    摘要: Compared with conventional radar altimeter (CRA), synthetic aperture radar altimeter (SARAL) is a new generation radar altimeter and has better height precision and spatial resolution. As using synthetic aperture technique, SARAL data processing is very different from CRA. To verify the performance and the processing algorithm, an airborne experimental system of SARAL is developed. The experimental system was installed in Y-12 aircraft, and a lot of data was obtained in the October 2014. The echo signal with SAR mode and conventional mode are obtained at the same time, so the standard deviations of the two modes are compared. The results indicate that the height precision of SARAL is improved about 1 times. The significant wave height value extracted from the SARAL waveform is very close to that of the buoy deployed at the experiment area.

  • THE LATEST ASSESSMENT FOR THE REPROCESSED GDR PRODUCT OF HY-2A ALTIMETER

    分类: 地球科学 >> 空间物理学 提交时间: 2016-05-03

    摘要: This paper is aimed to assess the accuracy of HY-2A altimetry system. To further improve the accuracy and performance of HY-2A observed SSHs, several new treatments including 4 parameters maximum likelihood estimation (MLE4) retracking for Ku and C band, non-parameter sea state bias (NPSSB) model, and reprocessed dual-frequency altimeter ionospheric correction are included. The evaluation from dual-crossover comparison of the fully reprocessed level-2 sensor geophysical dataset records (SGDRs) data suggests that the algorithm and model improvements mentioned above give rise to remarkable promotion to the accuracy of the forthcoming version GDRs. In this study we conclude that the standard deviation of 5.79 cm is achieved from crossover comparison between HY-2A and Jason-2 sea surface height (SSHs), suggesting a promising situation of HY-2A altimetry datasets.