• FY-3气象卫星紫外臭氧总量探测仪辐亮度在轨定标与反演结果分析

    Subjects: Geosciences >> Space Physics submitted time 2016-12-26

    Abstract:FY-3气象卫星上搭载的紫外臭氧总量探测仪TOU是我国自主开发研制的首台用于全球臭氧总量定量测量的探测仪,自发射以来已成功在轨运行近两年。由于TOU发射前辐亮度定标存在偏差,为了得到高精度的产品,TOU必须进行在轨定标。本文介绍了基于辐射传输模式计算对TOU辐亮度进行在轨道定标的方法,定标过程中用于模拟辐亮度计算的臭氧总量由与TOU观测时刻相近的国外臭氧总量探测仪器MetOp/GOME-2提供。文章将在轨定标后TOU的反演结果与AURA/OMI以及地基的产品进行比较,研究结果表明,用辐射传输模式对TOU辐亮度进行在轨定标的方法是可行的,反演结果能够真实的反映臭氧的时空分布特性,在全球部分地基观测站所处的位置上对TOU, OMI以及地基的臭氧总量进行比较的结果表明,TOU与OMI的相对偏差均方根约为2.52%, TOU与地基以及OMI与地基观测结果之间的相对偏差均方根分别为4.45%和3.89%。

  • 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测

    Subjects: Geosciences >> Space Physics submitted time 2016-05-03

    Abstract: The radio occultation (RO) technique using signals from the global navigation satellite system, is widely used to observe the atmosphere for applications such as numerical weather prediction (NWP) and global climate monitoring. Since 1995, there have been turborogue sounder on board global positioning system/meteorology, black jack sounder on board challenging minisatellite payload and gravity recovery and climate experiment, IGOR sounder on board constellation observing system for meteorology, ionosphere and climate, GRAS on board meteorological operational, which have been recieving a large number of RO data, but their observed signals come only from global positioning system (GPS). These RO data have been wildly used in NWP and climate monitoring, however they cannot meet the requirements for high accuracy and real time atmosphere observation, in this case compatible RO sounder to obtain more RO observations is significant. Global navigation satellite system occultation sounder (GNOS) on board the fengyun3 C (FY3 C) satellite, which is the first Bei Dou system (BDS)/GPS compatible RO sounder in the world, was launched on 23 September 2013. Up to now, lots of RO observations have been obtained. In this study, the components of GNOS are introduced; one-day GNOS RO events and their global distribution are analyzed; compared with the GPS RO observations, the accuracy and consistency of BDS real-time positioning results and BDS RO products are analyzed. The preliminary results show that the BDS can enhance the number of RO events by 33.3%; the average deviation and standard deviation of BDS real time positioning results are 6 m and 7 m, respectively; the BDS/GPS difference standard deviation of refrectivity, temperature, humidity, pressure and ionospheric electron density are lower than 2%, 2 K, 1.5 g/kg, 2%, and 15.6%, respectively. The BDS observations/products are consistent with those of GPS, therefore BDS RO products can bring benefit to numerical wheather prediction and global chlimate change analysis.