您选择的条件: ZHANG Wenwen
  • Extreme drought with seasonal timing consistently promotes CH4 uptake through inconsistent pathways in a temperate grassland, China

    分类: 地球科学 >> 大气科学 提交时间: 2024-06-21 合作期刊: 《干旱区科学》

    摘要: Methane (CH4) is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect. Increasing extreme precipitation events, such as drought, attributable to global warming that caused by greenhouse gases, exert a profound impact on the intricate biological processes associated with CH4 uptake. Notably, the timing of extreme drought occurrence emerges as a pivotal factor influencing CH4 uptake, even when the degree of drought remains constant. However, it is still unclear how the growing season regulates the response of CH4 uptake to extreme drought. In an effort to bridge this knowledge gap, we conducted a field manipulative experiment to evaluate the impact of extreme drought on CH4 uptake during early, middle, and late growing stages in a temperate steppe of Inner Mongolia Autonomous Region, China. The result showed that all extreme drought consistently exerted positive effects on CH4 uptake regardless of seasonal timing. However, the magnitude of this effect varied depending on the timing of season, as evidenced by a stronger effect in early growing stage than in middle and late growing stages. Besides, the pathways of CH4 uptake were different from seasonal timing. Extreme drought affected soil physical-chemical properties and aboveground biomass (AGB), consequently leading to changes in CH4 uptake. The structural equation model showed that drought both in the early and middle growing stages enhanced CH4 uptake due to reduced soil water content (SWC), leading to a decrease in NO3–-N and an increase in pmoA abundance. However, drought in late growing stage primarily enhanced CH4 uptake only by decreasing SWC. Our results suggested that seasonal timing significantly contributed to regulate the impacts of extreme drought pathways and magnitudes on CH4 uptake. The findings can provide substantial implications for understanding how extreme droughts affect CH4 uptake and improve the prediction of potential ecological consequence under future climate change.