按提交时间
按主题分类
按作者
按机构
您选择的条件: 2024-2
  • Formation and ecological response of sand patches in the protection system of Shapotou section of the Baotou-Lanzhou railway, China

    分类: 地球科学 >> 地理学 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: The development of bare patches typically signifies a process of ecosystem degradation. Within the protection system of Shapotou section of the Baotou-Lanzhou railway, the extensive emergence of bare sand patches poses a threat to both stability and sustainability. However, there is limited knowledge regarding the morphology, dynamic changes, and ecological responses associated with these sand patches. Therefore, we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation, survey, and indoor analysis methods. The results showed that sand patch development can be divided into three stages, i.e., formation, expansion, and stabilization, which correspond to the initial, actively developing, and semi-fixed sand patches, respectively. The average dimensions of all sand patch erosional areas were found to be 7.72 m in length, 3.91 m in width, and 0.32 m in depth. The actively developing sand patches were the largest, and the initial sand patches were the smallest. Throughout the stage of formation and expansion, the herbaceous community composition changed, and the plant density decreased by more than 50.95%. Moreover, the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe; and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend. In the stabilization phases of sand patches, the area from the inlet to the bottom of sand patches becomes initially covered with crusts. Vegetation and 0–2 cm surface soil condition improved in the erosional area, but this improvement was not yet evident in the depositional lobe. Factors such as disturbance, climate change, and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches. The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.

  • Land use and cover change and influencing factor analysis in the Shiyang River Basin, China

    分类: 地球科学 >> 地理学 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Land use and cover change (LUCC) is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface, with significant impacts on the environment and social economy. Rapid economic development and climate change have resulted in significant changes in land use and cover. The Shiyang River Basin, located in the eastern part of the Hexi Corridor in China, has undergone significant climate change and LUCC over the past few decades. In this study, we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991, 1995, 2000, 2005, 2010, 2015, and 2020 based on Landsat images. We validated the land use and cover data in 2015 from the random forest classification results (this study), the high-resolution dataset of annual global land cover from 2000 to 2015 (AGLC-2000-2015), the global 30 m land cover classification with a fine classification system (GLC_FCS30), and the first Landsat-derived annual China Land Cover Dataset (CLCD) against ground-truth classification results to evaluate the accuracy of the classification results in this study. Furthermore, we explored and compared the spatiotemporal patterns of LUCC in the upper, middle, and lower reaches of the Shiyang River Basin over the past 30 years, and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural (evapotranspiration, precipitation, temperature, and surface soil moisture) and anthropogenic (nighttime light, gross domestic product (GDP), and population) factors. The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015, GLC_FCS30, and CLCD datasets in both overall and partial validations. Moreover, the classification results in this study exhibited a high level of agreement with the ground truth features. From 1991 to 2020, the area of bare land exhibited a decreasing trend, with changes primarily occurring in the middle and lower reaches of the basin. The area of grassland initially decreased and then increased, with changes occurring mainly in the upper and middle reaches of the basin. In contrast, the area of cropland initially increased and then decreased, with changes occurring in the middle and lower reaches. The LUCC was influenced by both natural and anthropogenic factors. Climatic factors and population contributed significantly to LUCC, and the importance values of evapotranspiration, precipitation, temperature, and population were 22.12%, 32.41%, 21.89%, and 19.65%, respectively. Moreover, policy interventions also played an important role. Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years, with the ecological environment improving in the last 10 years. This suggests that governance efforts in the study area have had some effects, and the government can continue to move in this direction in the future. The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.

  • Influence of varied drought types on soil conservation service within the framework of climate change: insights from the Jinghe River Basin, China

    分类: 地球科学 >> 地球科学其他学科 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau, China. Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development. However, there is little research on the coupling relationship between them. In this study, focusing on the Jinghe River Basin, China as a case study, we conducted a quantitative evaluation on meteorological, hydrological, and agricultural droughts (represented by the Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Standardized Soil Moisture Index (SSMI), respectively) using the Variable Infiltration Capacity (VIC) model, and quantified the soil conservation service using the Revised Universal Soil Loss Equation (RUSLE) in the historical period (2000–2019) and future period (2026–2060) under two Representative Concentration Pathways (RCPs) (RCP4.5 and RCP8.5). We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales. The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios. The results showed that in the historical period, annual-scale meteorological drought exhibited the highest intensity, while seasonal-scale drought was generally weakest in autumn and most severe in summer. Drought intensity of all three types of drought will increase over the next 40 years, with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario. Furthermore, the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period (2000–2019). Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north, and this pattern has remained consistent both in the historical and future periods. Over the past 20 years, the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter; the total soil conservation of the Jinghe River Basin displayed an upward trend, with the total soil conservation in 2019 being 1.14 times higher than that in 2000. The most substantial impact on soil conservation service arises from annual-scale meteorological drought, which remains consistent both in the historical and future periods. Additionally, at the seasonal scale, meteorological drought exerts the highest influence on soil conservation service in winter and autumn, particularly under the RCP4.5 and RCP8.5 scenarios. Compared to the historical period, the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact. This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service, as well as the response of soil conservation service to different types of drought. Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.

  • A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains

    分类: 地球科学 >> 大气科学 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Climate warming profoundly affects hydrological changes, agricultural production, and human society. Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting. The Chinese Tianshan Mountains (CTM) have a high climate sensitivity, rendering the region particularly vulnerable to the effects of climate warming. In this study, we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset (1961–2014) and 24 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale. Based on this, we conducted a systematic review of the interannual trends, dry–wet transitions (based on the standardized precipitation index (SPI)), and spatial distribution patterns of climate change in the CTM during 1961–2014. We further projected future temperature and precipitation changes over three terms (near-term (2021–2040), mid-term (2041–2060), and long-term (2081–2100)) relative to the historical period (1961–2014) under four shared socio-economic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It was found that the CTM had experienced significant warming and wetting from 1961 to 2014, and will also experience warming in the future (2021–2100). Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble (MME) from the CMIP6 GCMs. The MME simulation results indicated an apparent wetting in 2008, which occurred later than the wetting observed from the CN05.1 in 1989. The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM. Warming and wetting are more rapid in the northern part of the CTM. By the end of the 21st century, all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry–wet transitions. However, the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future, so the nature of the drought in the CTM will not change at all. Additionally, the projected summer precipitation shows negative correlation with the radiative forcing. This study holds practical implications for the awareness of climate change and subsequent research in the CTM.

  • Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors

    分类: 地球科学 >> 水文学 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers. The Indicators of Hydrologic Alteration and the Range of Variability Approach (IHA-RVA) method, as well as the ecological indicator method, were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020. Using Budyko's water heat coupling balance theory, the relative contributions of various driving factors (such as precipitation, potential evapotranspiration, and underlying surface) to runoff changes in the Yellow River Basin were quantitatively evaluated. The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend, whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020. In approximately 1985, it was reported that the hydrological regime of the main stream underwent an abrupt change. The degree of hydrological change was observed to gradually increase from upstream to downstream, with a range of 34.00%–54.00%, all of which are moderate changes. However, significant differences have been noted among different ecological indicators, with a fluctuation index of 90.00% at the outlet of downstream hydrological stations, reaching a high level of change. After the mutation, the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period. The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation, with a contribution rate of 39.31%–54.70%. Moreover, the driving factor for runoff changes in the middle and lower reaches is mainly human activities, having a contribution rate of 63.70%–84.37%. These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.

  • Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability

    分类: 地球科学 >> 水文学 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Groundwater quality assessment is important to assure safe and durable water use. In semi-arid areas of Algeria, groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands. Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi, Algeria, and were analyzed and compared with the World Health Organization (WHO) standards. Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards. Groundwater had a slightly alkaline water pH (7.00–7.79), electrical conductivity>1500 µS/cm, chloride>500 mg/L, calcium>250 mg/L, and magnesium>155 mg/L. Water quality index (WQI) results showed that 68% of the area had excellent water quality, 24% of the samples fell into good category, and only 8% were of poor quality and unsuitable for human consumption. Six wells in the area showed bacterial contamination. Total coliforms (453.9 (±180.3) CFU (colony-forming units)/100 mL), fecal coliforms (243.2 (±99.2) CFU/100 mL), and fecal streptococci (77.9 (±32.0) CFU/100 mL) loads were above the standard limits set by the WHO. These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.

  • Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability

    分类: 地球科学 >> 水文学 提交时间: 2024-02-07 合作期刊: 《干旱区科学》

    摘要: Groundwater quality assessment is important to assure safe and durable water use. In semi-arid areas of Algeria, groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands. Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi, Algeria, and were analyzed and compared with the World Health Organization (WHO) standards. Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards. Groundwater had a slightly alkaline water pH (7.007.79), electrical conductivity>1500 S/cm, chloride>500 mg/L, calcium>250 mg/L, and magnesium>155 mg/L. Water quality index (WQI) results showed that 68% of the area had excellent water quality, 24% of the samples fell into good category, and only 8% were of poor quality and unsuitable for human consumption. Six wells in the area showed bacterial contamination. Total coliforms (453.9 (180.3) CFU (colony-forming units)/100 mL), fecal coliforms (243.2 (99.2) CFU/100 mL), and fecal streptococci (77.9 (32.0) CFU/100 mL) loads were above the standard limits set by the WHO. These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.

  • A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains

    分类: 地球科学 >> 大气科学 提交时间: 2024-02-07 合作期刊: 《干旱区科学》

    摘要: Climate warming profoundly affects hydrological changes, agricultural production, and human society. Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting. The Chinese Tianshan Mountains (CTM) have a high climate sensitivity, rendering the region particularly vulnerable to the effects of climate warming. In this study, we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset (19612014) and 24 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale. Based on this, we conducted a systematic review of the interannual trends, drywet transitions (based on the standardized precipitation index (SPI)), and spatial distribution patterns of climate change in the CTM during 19612014. We further projected future temperature and precipitation changes over three terms (near-term (20212040), mid-term (20412060), and long-term (20812100)) relative to the historical period (19612014) under four shared socio-economic pathway (SSP) scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It was found that the CTM had experienced significant warming and wetting from 1961 to 2014, and will also experience warming in the future (20212100). Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble (MME) from the CMIP6 GCMs. The MME simulation results indicated an apparent wetting in 2008, which occurred later than the wetting observed from the CN05.1 in 1989. The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM. Warming and wetting are more rapid in the northern part of the CTM. By the end of the 21st century, all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple drywet transitions. However, the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future, so the nature of the drought in the CTM will not change at all. Additionally, the projected summer precipitation shows negative correlation with the radiative forcing. This study holds practical implications for the awareness of climate change and subsequent research in the CTM.

  • Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors

    分类: 地球科学 >> 水文学 提交时间: 2024-02-07 合作期刊: 《干旱区科学》

    摘要: Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers. The Indicators of Hydrologic Alteration and the Range of Variability Approach (IHA-RVA) method, as well as the ecological indicator method, were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020. Using Budyko's water heat coupling balance theory, the relative contributions of various driving factors (such as precipitation, potential evapotranspiration, and underlying surface) to runoff changes in the Yellow River Basin were quantitatively evaluated. The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend, whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020. In approximately 1985, it was reported that the hydrological regime of the main stream underwent an abrupt change. The degree of hydrological change was observed to gradually increase from upstream to downstream, with a range of 34.00%54.00%, all of which are moderate changes. However, significant differences have been noted among different ecological indicators, with a fluctuation index of 90.00% at the outlet of downstream hydrological stations, reaching a high level of change. After the mutation, the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period. The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation, with a contribution rate of 39.31%54.70%. Moreover, the driving factor for runoff changes in the middle and lower reaches is mainly human activities, having a contribution rate of 63.70%84.37%. These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.

  • Exploring groundwater quality in semi-arid areas of Algeria: Impacts on potable water supply and agricultural sustainability

    分类: 地球科学 >> 水文学 提交时间: 2024-02-07 合作期刊: 《干旱区科学》

    摘要: Groundwater quality assessment is important to assure safe and durable water use. In semi-arid areas of Algeria, groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands. Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi, Algeria, and were analyzed and compared with the World Health Organization (WHO) standards. Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards. Groundwater had a slightly alkaline water pH (7.007.79), electrical conductivity>1500 S/cm, chloride>500 mg/L, calcium>250 mg/L, and magnesium>155 mg/L. Water quality index (WQI) results showed that 68% of the area had excellent water quality, 24% of the samples fell into good category, and only 8% were of poor quality and unsuitable for human consumption. Six wells in the area showed bacterial contamination. Total coliforms (453.9 (180.3) CFU (colony-forming units)/100 mL), fecal coliforms (243.2 (99.2) CFU/100 mL), and fecal streptococci (77.9 (32.0) CFU/100 mL) loads were above the standard limits set by the WHO. These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.

  • Random Surface Scattering Models of RR Polarization for SoOp-R/GNSS-R Application

    分类: 天文学 >> 天文学 分类: 地球科学 >> 大地测量学 提交时间: 2024-02-05

    摘要: LR polarization is commonly used for the corresponding geophysical parameters retrieval in GNSS#2; R(Global Navigation Satellite System-Reflectometry) or SoOP-R (Signal of Opportunity-Reflectometry) . However, the other polarization of the reflected signals has attracted more and more attention with the development . The popular used equation for RR polarization demonstrates that it decreases as the soil moisture content increase and this is in contradiction with the experiment data. Here, three new models have been developed: Spec4PolR (Specular reflectivity model for polarization GNSS#2; R), SPM4Pol (small perturbation model for polarization GNSS#2; R), and Umich4Pol (Umich model for polarization GNSS-R). The Mueller matrix of these three models has been presented and the wave synthesis technique is employed to calculate the reflectivity at RR polarization. Spec4polR employs only three elements in the Mueller matrix for the final reflectivity, while five elements for Umich4polR participate in the calculation and although all the elements of the SPM4Pol have constructed the Mueller matrix and only nine elements have been employed for calculation. Each elements' effects on the soil moisture content are presented and the final reflectivity at RR polarization has been illustrated. However, due to the simple formulations of Spec4Pol, its reflectivity at RR polarization still decreases as the soil moisture content increase. while the results of SPM4Pol and Umich4Pol are consistent with the measured data and the reflectivity at RR polarization increase as the soil moisture content increase. The accurate forward calculation of RR polarization is crucial for the subsequent retrieval algorithm of polarization GNSS-R/SoOP-R.